Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 881: 173194, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32445705

RESUMO

Exogenous cannabinoid receptor agonists are clinically effective for treating chronic pain but frequently cause side effects in the central nervous system. Fatty acid amide hydrolase (FAAH) is a primary catabolic enzyme for anandamide, an endogenous cannabinoid agonist. 3-Pyridyl 4-(phenylcarbamoyl)piperidine-1-carboxylate (ASP8477) is a potent and selective FAAH inhibitor that is orally active and able to increase the brain anandamide level and is effective in rat models of neuropathic and osteoarthritis pain without causing motor coordination deficits. In the present study, we examined the pharmacokinetics and pharmacodynamics, analgesic spectrum in pain models, and the anti-nociceptive mechanism of ASP8477. Single and four-week repeated oral administration of ASP8477 ameliorated mechanical allodynia in spinal nerve ligation rats with similar improvement rates. Further, single oral administration of ASP8477 improved thermal hyperalgesia and cold allodynia in chronic constriction nerve injury rats. ASP8477 also restored muscle pressure thresholds in reserpine-induced myalgia rats. This analgesic effect of ASP8477 persisted for at least 4 h, consistent with the inhibitory effect observed in an ex vivo study using rat brain as well as the increasing effect on oleoylethanolamide and palmitoylethanolamide levels but not the ASP8477 concentration in rat brain. ASP8477 also improved α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-, N-methyl-D-aspartic acid (NMDA)-, prostaglandin E2-, prostaglandin F2α-, and bicuculline-induced allodynia in mice, showing broader analgesic spectra than existing drugs. In contrast, however, ASP8477 did not affect acute pain. These results indicate that the FAAH inhibitor ASP8477 exerts analgesic effects on neuropathic and dysfunctional pain, and its pharmacological properties are suitable for use in treating chronic pain.


Assuntos
Amidoidrolases/antagonistas & inibidores , Analgésicos/farmacologia , Encéfalo/efeitos dos fármacos , Dor Crônica/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Neuralgia/tratamento farmacológico , Piperidinas/farmacologia , Piridinas/farmacologia , Amidas/metabolismo , Amidoidrolases/metabolismo , Analgésicos/farmacocinética , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Dor Crônica/enzimologia , Dor Crônica/fisiopatologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacocinética , Etanolaminas/metabolismo , Masculino , Neuralgia/enzimologia , Neuralgia/fisiopatologia , Ácidos Oleicos/metabolismo , Limiar da Dor/efeitos dos fármacos , Ácidos Palmíticos/metabolismo , Piperidinas/farmacocinética , Piridinas/farmacocinética , Ratos Sprague-Dawley
2.
Eur J Pharmacol ; 815: 42-48, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29017758

RESUMO

Although exogenous agonists for cannabinoid (CB) receptors are clinically effective for treating chronic pain, global activation of brain CB receptors causes frequent central nervous system (CNS) side-effects. Fatty acid amide hydrolase (FAAH) is a primary catabolic enzyme for anandamide (AEA), an endogenous CB. Recently, we discovered a novel FAAH inhibitor, 3-pyridyl 4-(phenylcarbamoyl)piperidine-1-carboxylate (ASP8477). In vitro studies demonstrated that ASP8477 inhibited human FAAH-1, FAAH-1 (P129T) and FAAH-2 activity with IC50 values of 3.99, 1.65 and 57.3nM, respectively. ASP8477 at 10µM had no appreciable interactions with 65 different kinds of receptors, ion channels, transporters and enzymes, including CB1 and CB2 receptors and monoacylglycerol lipase. In adolescent rats, orally administered ASP8477 (0.3-10mg/kg) elevated AEA concentrations in both plasma and brain. In a capsaicin-induced secondary hyperalgesia model, a pretreatment with ASP8477 significantly improved mechanical allodynia and thermal hyperalgesia at 0.3-3mg/kg p.o. ASP8477 also significantly improved mechanical allodynia in an L5/L6 spinal nerve ligation neuropathic pain model, with an ED50 value of 0.63mg/kg, and in a streptozotocin-induced diabetic neuropathy model at 3 and 10mg/kg p.o. Furthermore, ASP8477 significantly attenuated the reduction in rearing events at 1 and 3mg/kg p.o. in a monoiodoacetic acid-induced osteoarthritis model. Importantly, ASP8477 had no significant effect on motor coordination up to 30mg/kg p.o. These results indicate that ASP8477 is a potent, selective, and oral active FAAH inhibitor with activity in the CNS, with the potential to be a new analgesic agent with a wide safety margin.


Assuntos
Amidoidrolases/antagonistas & inibidores , Ácidos Carboxílicos/farmacologia , Inibidores Enzimáticos/farmacologia , Administração Oral , Analgésicos/administração & dosagem , Analgésicos/farmacologia , Animais , Ácidos Araquidônicos/metabolismo , Ácidos Carboxílicos/administração & dosagem , Relação Dose-Resposta a Droga , Endocanabinoides/metabolismo , Inibidores Enzimáticos/administração & dosagem , Humanos , Masculino , Alcamidas Poli-Insaturadas/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Ratos
3.
Neuropharmacology ; 126: 97-107, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28859883

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid that acts via at least six G protein-coupled receptors, LPA receptors 1-6 (LPA1-6), for various physiological functions. We examined (1) whether LPA5 is involved in pain signaling in the spinal cord; and (2) the pharmacological effects of a novel LPA5 antagonist on intrathecal prostaglandin (PG)- and (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced allodynia, and neuropathic and inflammatory pain in rodents. Intrathecal injection of a selective LPA5 agonist, geranylgeranyl diphosphate, and a non-selective agonist, LPA, induced allodynia in wild type, but not in LPA5 knockout mice. These novel results suggest that LPA5 is important for pain signal transmission in the spinal cord. AS2717638 (6,7-dimethoxy-2-(5-methyl-1,2-benzoxazol-3-yl)-4-(piperidin-1-ylcarbonyl)isoquinolin-1(2H)-one) bound to the LPA-binding site on LPA5 and selectively inhibited LPA-induced cyclic adenosine monophosphate accumulation in human LPA5-but not LPA1-, 2-, or 3-expressing cells. Further, oral administration of AS2717638 inhibited LPA5 agonist-induced allodynia in mice. AS2717638 also significantly improved PGE2-, PGF2α-, and AMPA-induced allodynia, while both pregabalin and duloxetine alleviated only PGE2-induced allodynia in mice. Similarly, AS2717638 significantly ameliorated static mechanical allodynia and thermal hyperalgesia in rat models of chronic constriction injury (CCI)-induced neuropathic pain. AS2717638 also showed analgesic effects in a rat model of inflammatory pain. These findings suggest that LPA5 antagonists elicit broad analgesic effects against both neuropathic and inflammatory pain. Accordingly, pharmacological LPA5 antagonists are attractive development candidates for potential novel pain therapies.


Assuntos
Analgésicos/farmacologia , Benzoxazóis/farmacologia , Isoquinolinas/farmacologia , Dor/metabolismo , Dor/prevenção & controle , Piperidinas/farmacologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/prevenção & controle , Inflamação/complicações , Injeções Espinhais , Lisofosfolipídeos/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia , Limiar da Dor/efeitos dos fármacos , Fosfatos de Poli-Isoprenil/administração & dosagem , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Receptores de Ácidos Lisofosfatídicos/genética
4.
Pharmacol Biochem Behav ; 141: 10-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26597514

RESUMO

Given that patients with neuropathic pain suffer a mixture of spontaneous and evoked pain symptoms, we assessed the effects of drugs with different mechanism of action on spontaneous and evoked pain-associated behaviors in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve. Frequent aberrant limb movement on the operated side was measured to assess spontaneous pain-associated behavior, and mechanical allodynia and thermal hyperalgesia were evaluated to assess evoked pain-associated behaviors. These three types of behavior were assessed after administration of the following drugs: pregabalin (α2δ-subunit ligand), morphine (µ-opioid receptor agonist), perampanel (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid [AMPA] receptor antagonist), clonidine, dexmedetomidine (α2-adrenoceptor agonists), and diclofenac (non-steroidal anti-inflammatory drug [NSAID]). Pregabalin at an oral dose of 10 or 30mg/kg significantly alleviated frequent aberrant limb movement and mechanical allodynia, but not thermal hyperalgesia. Morphine at a subcutaneous dose of 1 or 3mg/kg significantly improved all three types of behavior. Perampanel at an oral dose of 1mg/kg attenuated only frequent aberrant limb movement. Intraperitoneal administration of clonidine (0.01 or 0.03mg/kg) and dexmedetomidine (0.03mg/kg) significantly improved all three types of behavior, while diclofenac did not relieve any of the behaviors. Pregabalin, clonidine, and dexmedetomidine significantly decreased motor performance at doses close to analgesic doses in the rotarod test. The present study demonstrates that responses to spontaneous and evoked pain symptoms in neuropathic pain condition differ depending on a drug's mechanism of action. The selection and application of drugs according to the specific symptoms would be considered for the medication of patients with neuropathic pain.


Assuntos
Analgésicos/uso terapêutico , Modelos Animais de Doenças , Neuralgia/tratamento farmacológico , Animais , Masculino , Neuralgia/fisiopatologia , Ratos , Ratos Sprague-Dawley
5.
Pharmacol Biochem Behav ; 108: 8-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23603031

RESUMO

Fibromyalgia is a prevalent musculoskeletal disorder characterized by chronic widespread pain that significantly reduces quality of life in patients. Due to the lack of consistently effective treatment, the development of improved therapies for treating fibromyalgia is necessary. As dysfunction of serotonergic analgesic control appears to be involved in the pathophysiology of fibromyalgia, the present study explored the potential of 5-HT(2C) receptor agonists as novel therapies for treating this disease. Three 5-HT(2C) receptor agonists (lorcaserin, vabicaserin and YM348) that have been suggested to be useful in the treatment of several central nervous system diseases, including obesity and schizophrenia, were used. The effect of systemic administration of these agents on the muscular hyperalgesia that develops in the reserpine-induced myalgia (RIM) rat, a putative animal model of fibromyalgia, was investigated. RIM rats exhibited decreased muscle pressure thresholds. Microdialysis experiments showed that the concentration of serotonin (5-HT) in the spinal cord of RIM rats was significantly lower than that of controls. Lorcaserin (0.3-3 mg/kg p.o.), vabicaserin (0.3-3 mg/kg s.c.) and YM348 (0.03-0.3 mg/kg p.o.) recovered the muscle pressure threshold. The effect of lorcaserin was reversed by the pretreatment with SB242084, a 5-HT(2C) receptor antagonist. Our findings demonstrate that 5-HT(2C) receptors play a critical role in muscular hyperalgesia in RIM rats and suggest that 5-HT(2C) receptor agonists have therapeutic potential for treating chronic pain in patients with fibromyalgia although clinical extrapolation remains to be a future challenge.


Assuntos
Hiperalgesia/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Agonistas do Receptor de Serotonina/administração & dosagem , Animais , Hiperalgesia/induzido quimicamente , Locomoção/efeitos dos fármacos , Microdiálise , Músculo Esquelético/patologia , Ratos , Ratos Sprague-Dawley , Reserpina/administração & dosagem , Serotonina/análise , Agonistas do Receptor de Serotonina/farmacologia , Agonistas do Receptor de Serotonina/uso terapêutico , Medula Espinal/química , Medula Espinal/efeitos dos fármacos
6.
Biol Pharm Bull ; 34(7): 1105-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21720020

RESUMO

Transient receptor potential vanilloid 1 (TRPV1) is primarily expressed in central and peripheral terminals of non-myelinated primary afferent neurons. We previously showed that AS1928370, a novel TRPV1 antagonist that can prevent ligand-induced activation but not proton-induced activation, ameliorates neuropathic pain in rats without hyperthermic effect. In this study, we investigated its analgesic profile in mice. AS1928370 showed good oral bioavailability and high penetration into the brain and spinal cord in mice. The mean plasma-to-brain and plasma-to-spinal cord ratios were 4.3 and 3.5, respectively. Pretreatment with AS1928370 significantly suppressed both capsaicin-induced acute pain and withdrawal response in hot plate test at 10-30 mg/kg per os (p.o.). At lower oral doses (0.3-1.0 mg/kg), AS1928370 improved mechanical allodynia in mice undergoing spinal nerve ligation. Intrathecal administration of AS1928370 (30 µg/body) also significantly suppressed mechanical allodynia. In addition, AS1928370 showed no effect on locomotor activity up to 30 mg/kg p.o. These results suggest that spinal TRPV1 has an important role in the transmission of neuropathic pain and that the central nervous system (CNS) penetrant TRPV1 receptor antagonist AS1928370 is a promising candidate for treating neuropathic pain.


Assuntos
Benzamidas/farmacologia , Hiperalgesia/prevenção & controle , Neuralgia/prevenção & controle , Quinolonas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Benzamidas/administração & dosagem , Benzamidas/farmacocinética , Capsaicina/farmacologia , Modelos Animais de Doenças , Injeções Espinhais , Camundongos , Neuralgia/induzido quimicamente , Quinolonas/administração & dosagem , Quinolonas/farmacocinética , Distribuição Tecidual
7.
J Pharmacol Exp Ther ; 336(3): 743-50, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21098091

RESUMO

Transient receptor potential vanilloid 1 (TRPV1) is activated by a variety of stimulations, such as endogenous ligands and low pH, and is believed to play a role in pain transmission. TRPV1 antagonists have been reported to be effective in several animal pain models; however, some compounds induce hyperthermia in animals and humans. We discovered the novel TRPV1 antagonist (R)-N-(1-methyl-2-oxo-1,2,3,4-tetrahydro-7-quinolyl)-2-[(2-methylpyrrolidin-1-yl)methyl]biphenyl-4-carboxamide (AS1928370) in our laboratory. AS1928370 bound to the resiniferatoxin-binding site on TRPV1 and inhibited capsaicin-mediated inward currents with an IC50 value of 32.5 nM. Although AS1928370 inhibited the capsaicin-induced Ca²(+) flux in human and rat TRPV1-expressing cells, the inhibitory effect on proton-induced Ca²(+) flux was extremely small. In addition, AS1928370 showed no inhibitory effects on transient receptor potential vanilloid 4, transient receptor potential ankyrin 1, and transient receptor potential melastatin 8 in concentrations up to 10 µM. AS1928370 improved capsaicin-induced secondary hyperalgesia and mechanical allodynia in an L5/L6 spinal nerve ligation model in rats with respective ED50 values of 0.17 and 0.26 mg/kg p.o. Furthermore, AS1928370 alleviated inflammatory pain in a complete Freund's adjuvant model at 10 mg/kg p.o. AS1928370 had no effect on rectal body temperature up to 10 mg/kg p.o., although a significant hypothermic effect was noted at 30 mg/kg p.o. In addition, AS1928370 showed no significant effect on motor coordination. These results suggest that blockage of the TRPV1 receptor without affecting the proton-mediated TRPV1 activation is a promising approach to treating neuropathic pain because of the potential wide safety margin against hyperthermic effects. As such, compounds such as ASP1928370 may have potential as new analgesic agents for treating neuropathic pain.


Assuntos
Analgésicos/uso terapêutico , Benzamidas/uso terapêutico , Febre , Neuralgia/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Quinolonas/uso terapêutico , Canais de Cátion TRPV/antagonistas & inibidores , Analgésicos/farmacologia , Animais , Benzamidas/química , Benzamidas/farmacologia , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Febre/induzido quimicamente , Células HEK293 , Humanos , Masculino , Neuralgia/fisiopatologia , Dor/tratamento farmacológico , Dor/fisiopatologia , Medição da Dor/métodos , Ligação Proteica/fisiologia , Quinolonas/química , Quinolonas/farmacologia , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/fisiologia
8.
Physiol Behav ; 101(3): 327-30, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20570687

RESUMO

The paradigm of sine-wave electrical stimuli has been used for sensory neurological assessment in humans. In the present study, we applied the paradigm to the dog for the quantitative assessment of sensory function. Sine-wave electrical current stimuli at frequencies of 2000, 250, and 5Hz were delivered to bipolar electrodes attached to the skin surface of the hind paws. The stimulation intensity was gradually increased, and the minimum intensity required to elicit the lifting behavior in the stimulated paw was determined as current threshold (CT) for each of the three frequencies. Dogs consistently showed the lifting behavior at CTs without showing aversive behaviors such as vocalization and wriggling. The baseline CTs (mean+/-SEM, n=12) were 4430+/-110microA for CT2000, 2215+/-173microA for CT250, and 2305+/-152microA for CT5. The CTs immediately increased after bolus intravenous injection of fentanyl at 10microg/kg, although the significant increase disappeared within 1h. The time course for the CTs was parallel to that of plasma fentanyl concentration. In conclusion, the present study applied the paradigm of transcutaneous sine-wave electrical stimuli to the dog, and used the hind paw lifting as endpoint behavior. This paradigm is simple, non-invasive, useful in the assessment of sensory function, and can be adapted to investigate the pharmacokinetics/pharmacodynamics relation of drugs. Further studies are needed to give the conclusive interpretation of the endpoint behavior.


Assuntos
Analgésicos Opioides/farmacologia , Cães/fisiologia , Fentanila/farmacologia , Limiar Sensorial/efeitos dos fármacos , Estimulação Elétrica Nervosa Transcutânea/métodos , Analgésicos Opioides/farmacocinética , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Fentanila/farmacocinética , Masculino , Modelos Animais , Padrões de Referência , Limiar Sensorial/fisiologia , Estatísticas não Paramétricas
9.
Eur J Pharmacol ; 589(1-3): 98-101, 2008 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-18565509

RESUMO

The P2X(2/3) receptor has an important role in the nociceptive transmission. Minodronic acid is a third third-generation bisphosphonate and a potent inhibitor of bone resorption. We found that minodronic acid inhibited alpha,beta-methylene ATP-induced cation uptake with the potency higher than that of suramin in the P2X(2/3) receptor receptor-expressing cells. Other bisphosphonates did not show such activity. Subcutaneously administered (10-50 mg/kg) minodronic acid significantly inhibited the alpha,beta-methylene ATP-, acetic acid- and formalin-induced nociceptive behaviors in mice. These unique effects of minodronic acid would be beneficial for the treatment of accelerated bone turnover diseases accompanied by bone pain, including bone metastases.


Assuntos
Analgésicos não Narcóticos/farmacologia , Conservadores da Densidade Óssea/farmacologia , Difosfonatos/farmacologia , Imidazóis/farmacologia , Dor/prevenção & controle , Antagonistas do Receptor Purinérgico P2 , Ácido Acético , Trifosfato de Adenosina/análogos & derivados , Analgésicos não Narcóticos/administração & dosagem , Animais , Conservadores da Densidade Óssea/administração & dosagem , Células CHO , Cricetinae , Cricetulus , Difosfonatos/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Formaldeído , Imidazóis/administração & dosagem , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos ICR , Dor/induzido quimicamente , Dor/metabolismo , Medição da Dor , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2X3 , Fatores de Tempo , Transfecção
10.
Eur J Pharmacol ; 571(1): 8-16, 2007 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-17597604

RESUMO

Metabotropic glutamate receptor 1 (mGlu(1) receptor) has been suggested to play an important role in pain transmission. In this study, the effects of a newly-synthesized mGlu(1) receptor antagonist, (R)-N-cycloheptyl-6-({[(tetrahydro-2-furyl)methyl]amino}methyl)thieno[2,3-d]pyrimidin-4-ylamine (YM-230888), were examined in a variety of rodent chronic pain models in order to characterize the potential analgesic profile of mGlu(1) receptor blockade. YM-230888 bound an allosteric site of mGlu(1) receptor with a K(i) value of 13+/-2.5 nM and inhibited mGlu(1)-mediated inositol phosphate production in rat cerebellar granule cells with an IC(50) value of 13+/-2.4 nM. It showed selectivity for mGlu(1) versus mGlu(2)-mGlu(7) subtypes and ionotropic glutamate receptors. YM-230888 recovered mechanical allodynia with an ED(50) value of 8.4 mg/kg p.o. in L5/L6 spinal nerve ligation models. It also showed antinociceptive response at doses of 10 and 30 mg/kg p.o. in streptozotocin-induced hyperalgesia models. In addition, it significantly reduced pain parameters at a dose of 30 mg/kg p.o. in complete Freund's adjuvant-induced arthritic pain models. Although YM-230888 showed no significant effect on rotarod performance time at doses of 10 or 30 mg/kg p.o., it significantly decreased it at a dose of 100 mg/kg p.o. On the other hand, YM-230888 showed no significant sedative effect in locomotor activity measurement up to 100 mg/kg p.o. These results suggest that the blockade of mGlu(1) receptors is an attractive target for analgesics. YM-230888 has potential as a new analgesic agent for the treatment of various chronic pain conditions. In addition, YM-230888 may be a useful tool for the investigation of mGlu(1) receptors.


Assuntos
Analgésicos/farmacologia , Cicloeptanos/farmacologia , Dor/prevenção & controle , Pirimidinas/farmacologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Analgésicos/metabolismo , Analgésicos/farmacocinética , Animais , Artrite Experimental/fisiopatologia , Artrite Experimental/prevenção & controle , Benzimidazóis/metabolismo , Ligação Competitiva , Linhagem Celular , Células Cultivadas , Doença Crônica , Cicloeptanos/metabolismo , Cicloeptanos/farmacocinética , Relação Dose-Resposta a Droga , Humanos , Cinética , Ligadura/efeitos adversos , Estrutura Molecular , Atividade Motora/efeitos dos fármacos , Dor/etiologia , Dor/fisiopatologia , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Ensaio Radioligante , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Glutamato Metabotrópico/metabolismo , Nervos Espinhais/cirurgia , Tiazóis/metabolismo , Trítio
11.
J Pharmacol Exp Ther ; 315(1): 163-9, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15976016

RESUMO

Metabotropic glutamate receptor type 1 (mGluR1) is thought to play important roles in the neurotransmission and pathogenesis of several neurological disorders. Here, we describe the radioligand binding properties and pharmacological effects of a newly synthesized, high-affinity, selective, and noncompetitive mGluR1 antagonist, 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimidazole-2-carboxamide (YM-298198). YM-298198 inhibited glutamate-induced inositol phosphate production in mGluR1-NIH3T3 cells with an IC50 of 16 +/- 5.8 nM in a noncompetitive manner. Its radiolabeled form, [3H]YM-298198, bound to mGluR1-NIH3T3 cell membranes with a KD of 32 +/- 8.5 nM and a Bmax of 2297 +/- 291 fmol/mg protein. In ligand displacement experiments using rat cerebellum membrane, an existing noncompetitive mGluR1 antagonist 7-(hydroxyimino)cyclo-propa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) competitively displaced [3H]YM-298198 binding, although glutamate and other mGluR1 ligands acting on a glutamate site failed to inhibit [3H]YM-298198 binding, suggesting that YM-298198 binds to CPCCOEt (allosteric) binding sites but not to glutamate (agonist) binding sites. Specificity was demonstrated for mGluR1 over mGluR subtypes 2 to 7, ionotropic glutamate receptors, and other receptor, transporter, and ion channel targets. In in vivo experiments, orally administered YM-298198 showed a significant analgesic effect in streptozotocin-induced hyperalgesic mice at doses (30 mg/kg) that did not cause Rotarod performance impairment, indicating that it is also useful even for in vivo experiments. In conclusion, YM-298198 is a newly synthesized, high-affinity, selective, and noncompetitive antagonist of mGluR1 that will be a useful pharmacological tool due to its highly active properties in vitro and in vivo. Its radiolabeled form [3H]YM-298198 will also be a valuable tool for future investigation of the mGluR1.


Assuntos
Benzimidazóis/metabolismo , Antagonistas de Aminoácidos Excitatórios/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Tiazóis/metabolismo , Analgesia , Animais , Benzimidazóis/farmacologia , Cerebelo/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Camundongos , Células NIH 3T3 , Ensaio Radioligante , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/análise , Tiazóis/farmacologia
12.
J Biol Chem ; 277(17): 14965-75, 2002 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-11847232

RESUMO

Presenilin (PS) genes linked to early-onset familial Alzheimer's disease encode polytopic membrane proteins that are presumed to constitute the catalytic subunit of gamma-secretase, forming a high molecular weight complex with other proteins. During our attempts to identify binding partners of PS2, we cloned CALP (calsenilin-like protein)/KChIP4, a novel member of calsenilin/KChIP protein family that interacts with the C-terminal region of PS. Upon co-expression in cultured cells, CALP was directly bound to and co-localized with PS2 in endoplasmic reticulum. Overexpression of CALP did not affect the metabolism or stability of PS complex, and gamma-cleavage of betaAPP or Notch site 3 cleavage was not altered. However, co-expression of CALP and a voltage-gated potassium channel subunit Kv4.2 reconstituted the features of A-type K(+) currents and CALP directly bound Kv4.2, indicating that CALP functions as KChIPs that are known as components of native Kv4 channel complex. Taken together, CALP/KChIP4 is a novel EF-hand protein interacting with PS as well as with Kv4 that may modulate functions of a subset of membrane proteins in brain.


Assuntos
Proteínas de Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/genética , Canais de Potássio/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Clonagem Molecular , Humanos , Ativação do Canal Iônico , Proteínas Interatuantes com Canais de Kv , Proteínas de Membrana/química , Camundongos , Dados de Sequência Molecular , Canais de Potássio/química , Presenilina-2 , Ligação Proteica , Homologia de Sequência de Aminoácidos , Canais de Potássio Shal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...