Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 33(11): 11894-11908, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31366236

RESUMO

Butyrate is a short-chain fatty acid derived from the metabolism of indigestible carbohydrates by the gut microbiota. Butyrate contributes to gut homeostasis, but it may also control inflammatory responses and host physiology in other tissues. Butyrate inhibits histone deacetylases, thereby affecting gene transcription, and also signals through the metabolite-sensing G protein receptor (GPR)109a. We produced an mAb to mouse GPR109a and found high expression on podocytes in the kidney. Wild-type and Gpr109a-/- mice were induced to develop nephropathy by a single injection of Adriamycin and treated with sodium butyrate or high butyrate-releasing high-amylose maize starch diet. Butyrate improved proteinuria by preserving podocyte at glomerular basement membrane and attenuated glomerulosclerosis and tissue inflammation. This protective phenotype was associated with increased podocyte-related proteins and a normalized pattern of acetylation and methylation at promoter sites of genes essential for podocyte function. We found that GPR109a is expressed by podocytes, and the use of Gpr109a-/- mice showed that the protective effects of butyrate depended on GPR109a expression. A prebiotic diet that releases high amounts of butyrate also proved highly effective for protection against kidney disease. Butyrate and GPR109a play a role in the pathogenesis of kidney disease and provide one of the important molecular connections between diet, the gut microbiota, and kidney disease.-Felizardo, R. J. F., de Almeida, D. C., Pereira, R. L., Watanabe, I. K. M., Doimo, N. T. S., Ribeiro, W. R., Cenedeze, M. A., Hiyane, M. I., Amano, M. T., Braga, T. T., Ferreira, C. M., Parmigiani, R. B., Andrade-Oliveira, V., Volpini, R. A., Vinolo, M. A. R., Mariño, E., Robert, R., Mackay, C. R., Camara, N. O. S. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms.


Assuntos
Butiratos/farmacologia , Epigênese Genética , Microbioma Gastrointestinal/fisiologia , Nefropatias/prevenção & controle , Proteinúria/prevenção & controle , Receptores Acoplados a Proteínas G/genética , Animais , Bactérias/metabolismo , Butiratos/metabolismo , Células Cultivadas , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Substâncias Protetoras/metabolismo , Substâncias Protetoras/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
2.
Physiol Genomics ; 47(5): 177-86, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25759379

RESUMO

The renin-angiotensin system (RAS) is subject to sex-specific modulation by hormones and gene products. However, sex differences in the balance between the vasoconstrictor/proliferative ACE/ANG II/AT1 axis, and the vasodilator/antiproliferative ACE2/ANG-(1-7)/MAS axis are poorly known. Data in the rat have suggested the male-specific Y-chromosome gene Sry to contribute to balance between these two axes, but why the testis-determining gene has these functions remains unknown. A combination of in silico genetic/protein comparisons, functional luciferase assays for promoters of the human RAS, and RNA-Seq profiling in rat were used to address if regulation of Sry on the RAS is conserved in the homologous X-chromosome gene, Sox3. Both SRY and SOX3 upregulated the promoter of Angiotensinogen (AGT) and downregulated the promoters of ACE2, AT2, and MAS, likely through overlapping mechanisms. The regulation by both SRY and SOX3 on the MAS promoter indicates a cis regulation through multiple SOX binding sites. The Renin (REN) promoter is upregulated by SRY and downregulated by SOX3, likely through trans and cis mechanisms, respectively. Sry transcripts are found in all analyzed male rat tissues including the kidney, while Sox3 transcripts are found only in the brain and testis, suggesting that the primary tissue for renin production (kidney) can only be regulated by SRY and not SOX3. These results suggest that SRY regulation of the RAS is partially shared with its X-chromosome homolog SOX3, but SRY gained a sex-specific control in the kidney for the rate-limiting step of the RAS, potentially resulting in male-specific blood pressure regulation.


Assuntos
Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Sistema Renina-Angiotensina/genética , Fatores de Transcrição SOXB1/genética , Proteína da Região Y Determinante do Sexo/genética , Cromossomo X/genética , Cromossomo Y/genética , Sequência de Aminoácidos , Angiotensinogênio/genética , Animais , Sequência de Bases , Sítios de Ligação , Células CHO , Sequência Conservada , Cricetinae , Cricetulus , Feminino , Perfilação da Expressão Gênica , Humanos , Luciferases/metabolismo , Masculino , Dados de Sequência Molecular , Peptidil Dipeptidase A/genética , Renina/genética , Fatores de Transcrição SOXB1/química , Fatores de Transcrição SOXB1/metabolismo , Homologia de Sequência do Ácido Nucleico , Proteína da Região Y Determinante do Sexo/química , Proteína da Região Y Determinante do Sexo/metabolismo
3.
Int J Biol Macromol ; 72: 673-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25263467

RESUMO

Somatic angiotensin-I converting enzyme (sACE) is a broadly distributed peptidase which plays a role in blood pressure and electrolyte homeostasis by the conversion of angiotensin I into angiotensin II. N-domain isoforms (nACE) with 65 and 90 kDa have been described in body fluids, tissues and mesangial cells (MC), and a 90 kDa nACE has been described only in spontaneously hypertensive rats. The aim of this study was to investigate the existence of proteolytic enzymes that may act in the hydrolysis of sACE generating nACEs in MC. After the confirmation of the presence of ACE sheddases in Immortalized MC (IMC), we purified and characterized these enzymes using fluorogenic substrates specifically designed for ACE sheddases. Purified enzyme identified as a serine protease by N-terminal sequence was able to generate nACE. In the present study, we described for the first time the presence of ACE sheddases in IMC, identified as serine proteases able to hydrolyze sACE in vitro. Further investigations are necessary to elucidate the mechanisms responsible for the expression and regulation of ACE sheddases in MC and their roles in the generation of nACEs, especially the 90 kDa form possibly related to hypertension.


Assuntos
Hipertensão/enzimologia , Peptidil Dipeptidase A/metabolismo , Proteólise , Serina Proteases/metabolismo , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Animais , Pressão Sanguínea , Humanos , Hipertensão/metabolismo , Células Mesangiais/enzimologia , Células Mesangiais/metabolismo , Peptidil Dipeptidase A/biossíntese , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/metabolismo , Ratos , Serina Proteases/biossíntese
4.
Gen Comp Endocrinol ; 215: 106-16, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25260253

RESUMO

The details of protein pathways at a structural level provides a bridge between genetics/molecular biology and physiology. The renin-angiotensin system is involved in many physiological pathways with informative structural details in multiple components. Few studies have been performed assessing structural knowledge across the system. This assessment allows use of bioinformatics tools to fill in missing structural voids. In this paper we detail known structures of the renin-angiotensin system and use computational approaches to estimate and model components that do not have their protein structures defined. With the subsequent large library of protein structures, we then created a species specific protein library for human, mouse, rat, bovine, zebrafish, and chicken for the system. The rat structural system allowed for rapid screening of genetic variants from 51 commonly used rat strains, identifying amino acid variants in angiotensinogen, ACE2, and AT1b that are in contact positions with other macromolecules. We believe the structural map will be of value for other researchers to understand their experimental data in the context of an environment for multiple proteins, providing pdb files of proteins for the renin-angiotensin system in six species. With detailed structural descriptions of each protein, it is easier to assess a species for use in translating human diseases with animal models. Additionally, as whole genome sequencing continues to decrease in cost, tools such as molecular modeling will gain use as an initial step in designing efficient hypothesis driven research, addressing potential functional outcomes of genetic variants with precompiled protein libraries aiding in rapid characterizations.


Assuntos
Angiotensinogênio/química , Evolução Biológica , Biologia Computacional , Modelos Moleculares , Sistema Renina-Angiotensina , Renina/química , Sequência de Aminoácidos , Angiotensinogênio/metabolismo , Animais , Bovinos , Galinhas , Humanos , Camundongos , Dados de Sequência Molecular , Conformação Proteica , Ratos , Renina/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Peixe-Zebra
5.
Int J Biol Macromol ; 49(1): 79-84, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21470562

RESUMO

Angiotensin converting enzyme 2 (ACE2) is a component of the renin-angiotensin system (RAS) which converts Ang II, a potent vasoconstrictor peptide into Ang 1-7, a vasodilator peptide which may act as a negative feedback hormone to the actions of Ang II. The discovery of this enzyme added a new level of complexity to this system. The mesangial cells (MC) have multiple functions in glomerular physiology and pathophysiology and are able to express all components of the RAS. Despite of being localized in these cells, ACE2 has not yet been purified or characterized. In this study ACE2 from mice immortalized MC (IMC) was purified by ion-exchange chromatography. The purified enzyme was identified as a single band around 60-70 kDa on SDS-polyacrylamide gel and by Western blotting using a specific antibody. The optima pH and chloride concentrations were 7.5 and 200 mM, respectively. The N-terminal sequence was homologous with many species ACE2 N-terminal sequences as described in the literature. ACE2 purified from IMC was able to hydrolyze Ang II into Ang 1-7 and the K(m) value for Ang II was determined to be 2.87 ± 0.76 µM. In conclusion, we purified and localized, for the first time, ACE2 in MC, which was able to generate Ang 1-7 from Ang II. Ang 1-7 production associated to Ang II degradation by ACE2 may exert a protective effect in the renal hemodynamic.


Assuntos
Células Mesangiais/enzimologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/isolamento & purificação , Sequência de Aminoácidos , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Western Blotting , Células Cultivadas , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Cinética , Camundongos , Microscopia de Fluorescência , Fragmentos de Peptídeos/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...