Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(16): 9753-9760, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33881019

RESUMO

Oligosaccharides play versatile roles in various biological systems but are difficult to characterize from a structural viewpoint due to their remarkable degrees of freedom in internal motion. Therefore, molecular dynamics simulations have been widely used to delineate the dynamic conformations of oligosaccharides. However, hardly any methods have thus far been available for the comprehensive characterization of simulation-derived conformational ensembles of oligosaccharides. In this research, we attempted to develop a non-linear multivariate analysis by employing a kernel method using two homologous high-mannose-type oligosaccharides composed of ten and eleven residues as model molecules. These oligosaccharides' conformers derived from simulations were mapped into reproductive kernel Hilbert space with a positive definite function in which all required non-redundant variables for describing the oligosaccharide conformations can be treated in a non-biased manner. By applying Gaussian mixture model clustering, the oligosaccharide conformers were successfully classified by different funnels in the free-energy landscape, enabling a systematic comparison of conformational ensembles of the homologous oligosaccharides. The results shed light on the contributions of intraresidue conformational factors such as the hydroxyl group orientation and/or ring puckering state to their global conformational dynamics. Our methodology will open opportunities to explore oligosaccharides' conformational spaces, and more generally, molecules with high degrees of motional freedom.


Assuntos
Oligossacarídeos/química , Configuração de Carboidratos , Sequência de Carboidratos , Simulação de Dinâmica Molecular/estatística & dados numéricos , Análise Multivariada , Termodinâmica
2.
Biochemistry ; 59(34): 3180-3185, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553574

RESUMO

We developed an approach to improve the lectin-binding affinity of an oligosaccharide by remodeling its conformational space in the precomplexed state. To develop this approach, we used a Lewis X-containing oligosaccharide interacting with RSL as a model system. Using an experimentally validated molecular dynamics simulation, we designed a Lewis X analogue with an increased population of conformational species that were originally very minor but exclusively accessible to the target lectin without steric hindrance by modifying the nonreducing terminal galactose, which does not directly contact the lectin in the complex. This Lewis X mimetic showed 17 times higher affinity for the lectin than the native counterpart. Our approach, complementing the lectin-bound-state optimizations, offers an alternative strategy to create high-affinity oligosaccharides by increasing populations of on-pathway metastable conformers.


Assuntos
Lectinas/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Sítios de Ligação , Configuração de Carboidratos , Modelos Moleculares , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA