Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioelectron Med ; 10(1): 4, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321561

RESUMO

BACKGROUND: Seizure detection is challenging outside the clinical environment due to the lack of comfortable, reliable, and practical long-term neurophysiological monitoring devices. We developed a novel, discreet, unobstructive in-ear sensing system that enables long-term electroencephalography (EEG) recording. This is the first study we are aware of that systematically compares the seizure detection utility of in-ear EEG with that of simultaneously recorded intracranial EEG. In addition, we present a similar comparison between simultaneously recorded in-ear EEG and scalp EEG. METHODS: In this foundational research, we conducted a clinical feasibility study and validated the ability of the ear-EEG system to capture focal-onset seizures against 1255 hrs of simultaneous ear-EEG data along with scalp or intracranial EEG in 20 patients with refractory focal epilepsy (11 with scalp EEG, 8 with intracranial EEG, and 1 with both). RESULTS: In a blinded, independent review of the ear-EEG signals, two epileptologists were able to detect 86.4% of the seizures that were subsequently identified using the clinical gold standard EEG modalities, with a false detection rate of 0.1 per day, well below what has been reported for ambulatory monitoring. The few seizures not detected on the ear-EEG signals emanated from deep within the mesial temporal lobe or extra-temporally and remained very focal, without significant propagation. Following multiple sessions of recording for a median continuous wear time of 13 hrs, patients reported a high degree of tolerance for the device, with only minor adverse events reported by the scalp EEG cohort. CONCLUSIONS: These preliminary results demonstrate the potential of using ear-EEG to enable routine collection of complementary, prolonged, and remote neurophysiological evidence, which may permit real-time detection of paroxysmal events such as seizures and epileptiform discharges. This study suggests that the ear-EEG device may assist clinicians in making an epilepsy diagnosis, assessing treatment efficacy, and optimizing medication titration.

2.
IEEE Trans Biomed Eng ; 71(5): 1599-1606, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38133969

RESUMO

OBJECTIVE: At-home sleep staging using wearable medical sensors poses a viable alternative to in-hospital polysomnography due to its lower cost and lower disruption to the daily lives of patients, especially in the case of long-term monitoring. Machine learning with wearables however is difficult due to the paucity of data from wearable sensors, making automation a challenge. Transfer learning from hospital polysomnograms can boost performance, but is still hindered by differences between wearable and in-hospital EEG resulting in part from differing electrode placement. We improve transfer learning performance by using electrophysiological models of a human head to generate synthetic EEG resembling EEG from a wearable sensor. METHODS: The data generation method utilizes Low-Resolution Electromagnetic Tomography Analysis (LORETA). Real EEG from standard in- hospital recordings is first mapped to point currents within the brain using LORETA, after which the point currents are used to estimate EEG that would have been recorded using a wearable sensor at any given point on the head. RESULTS: Augmenting source datasets with synthetic data statistically significantly boosted accuracy on a wearable sleep staging task from 80.8% to 81.3% on average, depending on the transfer learning parameters and data sources. CONCLUSION: Machine learning performance can be improved using data synthesized using physical models. SIGNIFICANCE: Our approach represents a new form of transfer learning and demonstrates that incorporating domain knowledge of electrophysiological modeling can improve machine learning results for sleep staging tasks. We expect this approach to be particularly useful for EEG data which is hard to collect, or which is obtained using unusual electrode configurations.


Assuntos
Eletroencefalografia , Aprendizado de Máquina , Fases do Sono , Humanos , Eletroencefalografia/métodos , Fases do Sono/fisiologia , Polissonografia/métodos , Dispositivos Eletrônicos Vestíveis , Processamento de Sinais Assistido por Computador
3.
Biomed Eng Online ; 21(1): 66, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096868

RESUMO

BACKGROUND: Obtaining medical data using wearable sensors is a potential replacement for in-hospital monitoring, but the lack of data for such sensors poses a challenge for development. One solution is using in-hospital recordings to boost performance via transfer learning. While there are many possible transfer learning algorithms, few have been tested in the domain of EEG-based sleep staging. Furthermore, there are few ways for determining which transfer learning method will work best besides exhaustive testing. Measures of transferability do exist, but are typically used for selection of pre-trained models rather than algorithms and few have been tested on medical signals. We tested several supervised transfer learning algorithms on a sleep staging task using a single channel of EEG (AF7-Fpz) captured from an in-home commercial system. RESULTS: Two neural networks-one bespoke and another state-of-art open-source architecture-were pre-trained on one of six source datasets comprising 11,561 subjects undergoing clinical polysomnograms (PSGs), then re-trained on a target dataset of 75 full-night recordings from 24 subjects. Several transferability measures were then tested to determine which is most effective for assessing performance on unseen target data. Performance on the target dataset was improved using transfer learning, with re-training the head layers being the most effective in the majority of cases (up to 63.9% of cases). Transferability measures generally provided significant correlations with accuracy (up to [Formula: see text]). CONCLUSION: Re-training the head layers provided the largest performance boost. Transferability measures are useful indicators of transfer learning effectiveness.


Assuntos
Fases do Sono , Dispositivos Eletrônicos Vestíveis , Algoritmos , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...