Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 27(6): 196, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35748272

RESUMO

Mitogen Activated Protein (MAP) kinases are a category of serine/threonine kinases that have been demonstrated to regulate intracellular events including stress responses, developmental processes, and cancer progression Although many MAP kinases have been extensively studied in various disease processes, MAP3K19 is an understudied kinase whose activities have been linked to lung disease and fibroblast development. In this manuscript, we use bioinformatics databases starBase, GEPIA, and KMPlotter, to establish baseline expressions of MAP3K19 in different tissue types and its correlation with patient survival in different cancers.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Neoplasias , Humanos , MAP Quinase Quinase Quinases , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética
2.
Ecotoxicol Environ Saf ; 233: 113330, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189517

RESUMO

Environmental chemical (EC) exposures and our interactions with them has significantly increased in the recent decades. Toxicity associated biological characterization of these chemicals is challenging and inefficient, even with available high-throughput technologies. In this report, we describe a novel computational method for characterizing toxicity, associated biological perturbations and disease outcome, called the Chemo-Phenotypic Based Toxicity Measurement (CPTM). CPTM is used to quantify the EC "toxicity score" (Zts), which serves as a holistic metric of potential toxicity and disease outcome. CPTM quantitative toxicity is the measure of chemical features, biological phenotypic effects, and toxicokinetic properties of the ECs. For proof-of-concept, we subject ECs obtained from the Environmental Protection Agency's (EPA) database to the CPTM. We validated the CPTM toxicity predictions by correlating 'Zts' scores with known toxicity effects. We also confirmed the CPTM predictions with in-vitro, and in-vivo experiments. In in-vitro and zebrafish models, we showed that, mixtures of the motor oil and food additive 'Salpn' with endogenous nuclear receptor ligands such as Vitamin D3, dysregulated the nuclear receptors and key transcription pathways involved in Colorectal Cancer. Further, in a human patient derived cell organoid model, we found that a mixture of the widely used pesticides 'Tetramethrin' and 'Fenpropathrin' significantly impacts the population of patient derived pancreatic cancer cells and 3D organoid models to support rapid PDAC disease progression. The CPTM method is, to our knowledge, the first comprehensive toxico-physicochemical, and phenotypic bionetwork-based platform for efficient high-throughput screening of environmental chemical toxicity, mechanisms of action, and connection to disease outcomes.


Assuntos
Neoplasias Colorretais , Neoplasias Pancreáticas , Praguicidas , Animais , Colecalciferol , Humanos , Praguicidas/toxicidade , Peixe-Zebra
3.
Breast Cancer Res Treat ; 189(1): 49-61, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34196902

RESUMO

PURPOSE: Breast cancer remains a prominent global disease affecting women worldwide despite the emergence of novel therapeutic regimens. Metastasis is responsible for most cancer-related deaths, and acquisition of a mesenchymal and migratory cancer cell phenotypes contributes to this devastating disease. The utilization of kinase targets in drug discovery have revolutionized the field of cancer research but despite impressive advancements in kinase-targeting drugs, a large portion of the human kinome remains understudied in cancer. NEK5, a member of the Never-in-mitosis kinase family, is an example of such an understudied kinase. Here, we characterized the function of NEK5 in breast cancer. METHODS: Stably overexpressing NEK5 cell lines (MCF7) and shRNA knockdown cell lines (MDA-MB-231, TU-BcX-4IC) were utilized. Cell morphology changes were evaluated using immunofluorescence and quantification of cytoskeletal components. Cell proliferation was assessed by Ki-67 staining and transwell migration assays tested cell migration capabilities. In vivo experiments with murine models were necessary to demonstrate NEK5 function in breast cancer tumor growth and metastasis. RESULTS: NEK5 activation altered breast cancer cell morphology and promoted cell migration independent of effects on cell proliferation. NEK5 overexpression or knockdown does not alter tumor growth kinetics but promotes or suppresses metastatic potential in a cell type-specific manner, respectively. CONCLUSION: While NEK5 activity modulated cytoskeletal changes and cell motility, NEK5 activity affected cell seeding capabilities but not metastatic colonization or proliferation in vivo. Here we characterized NEK5 function in breast cancer systems and we implicate NEK5 in regulating specific steps of metastatic progression.


Assuntos
Neoplasias da Mama , Quinases Relacionadas a NIMA , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos , Quinases Relacionadas a NIMA/genética , Fenótipo , RNA Interferente Pequeno
4.
Oncotarget ; 12(11): 1110-1115, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34084284

RESUMO

LKB1-signaling has prominent roles in cancer development and metastasis. This report evaluates LKB1-signaling pathway gene expression associations with patient survival in overall breast cancer, specific subtypes, as well as pre- and post-chemotherapy. Subtypes analyzed were based on intrinsic molecular subtyping and traditional biomarker classifications. Intrinsic molecular subtypes included were Luminal-A, Luminal-B, HER2-enriched, and Basal-like. The biomarker subtypes assessed were Estrogen-Receptor Positive (ER+) and Negative (ER-), Wild-Type TP53 (WT-TP53) & Mutant-TP53, and Triple-Negative Breast Cancer (TNBC). Additionally, comparisons were made between these subtypes and breast cancer overall, and analyses between LKB1 signaling to patient survival before and after chemotherapy were made. We used the Kaplan-Meier Online Tool (KM Plotter) to correlate the relationship between mRNA expression of known LKB1 scaffolding proteins (CAB39 and LYK5), and downstream signaling targets (AMPK, MARK1, MARK2, MARK3, MARK4, NUAK1, NUAK2, PAK1, SIK1, SIK2, BRSK1, BRSK2, SNRK, and QSK), and patient survival across each subtype and treatment group. Our findings provide evidence that LKB1-signaling is associated with improved survival in overall breast cancer. Stratification into breast cancer subtypes show a more complicated relationship; NUAK2, for example, is correlated with improved survival in ER- but is worse in ER+ breast cancer. In evaluating the association of LKB1-signaling pathway expression with relapse free survival of varying breast cancer tumors exposed to chemotherapy or treatment-naive tumors, our data provides baseline knowledge for understanding the pathway dynamics that affect survival and therefore are linked to pathology. This establishes a foundation for studying LKB1 targets with the goal of identifying druggable targets.

7.
PLoS One ; 15(10): e0226464, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33035223

RESUMO

Metaplastic breast carcinoma (MBC) is a clinically aggressive and rare subtype of breast cancer, with similar features to basal-like breast cancers. Due to rapid growth rates and characteristic heterogeneity, MBC is often unresponsive to standard chemotherapies; and novel targeted therapeutic discovery is urgently needed. Histone deacetylase inhibitors (DACi) suppress tumor growth and metastasis through regulation of the epithelial-to-mesenchymal transition axis in various cancers, including basal-like breast cancers. We utilized a new MBC patient-derived xenograft (PDX) to examine the effect of DACi therapy on MBC. Cell morphology, cell cycle-associated gene expressions, transwell migration, and metastasis were evaluated in patient-derived cells and tumors after treatment with romidepsin and panobinostat. Derivations of our PDX model, including cells, spheres, organoids, explants, and in vivo implanted tumors were treated. Finally, we tested the effects of combining DACi with approved chemotherapeutics on relative cell biomass. DACi significantly suppressed the total number of lung metastasis in vivo using our PDX model, suggesting a role for DACi in preventing circulating tumor cells from seeding distal tissue sites. These data were supported by our findings that DACi reduced cell migration, populations, and expression of mesenchymal-associated genes. While DACi treatment did affect cell cycle-regulating genes in vitro, tumor growth was not affected compared to controls. Importantly, gene expression results varied depending on the cellular or tumor system used, emphasizing the importance of using multiple derivations of cancer models in preclinical therapeutic discovery research. Furthermore, DACi sensitized and produced a synergistic effect with approved oncology therapeutics on inherently resistant MBC. This study introduced a role for DACi in suppressing the migratory and mesenchymal phenotype of MBC cells through regulation of the epithelial-mesenchymal transition axis and suppression of the CTC population. Preliminary evidence that DACi treatment in combination with MEK1/2 inhibitors exerts a synergistic effect on MBC cells was also demonstrated.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Depsipeptídeos/administração & dosagem , Inibidores de Histona Desacetilases/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Panobinostat/administração & dosagem , Animais , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Depsipeptídeos/farmacologia , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Neoplasias Pulmonares/genética , Camundongos , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/efeitos dos fármacos , Panobinostat/farmacologia , Modelagem Computacional Específica para o Paciente , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia
8.
Oncotarget ; 8(54): 92926-92942, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29190967

RESUMO

Triple negative breast cancer (TNBC) is a group of cancers whose heterogeneity and shortage of effective drug therapies has prompted efforts to divide these cancers into molecular subtypes. Our computational platform, entitled GenEx-TNBC, applies concepts in systems biology and polypharmacology to prioritize thousands of approved and experimental drugs for therapeutic potential against each molecular subtype of TNBC. Using patient-based and cell line-based gene expression data, we constructed networks to describe the biological perturbation associated with each TNBC subtype at multiple levels of biological action. These networks were analyzed for statistical coincidence with drug action networks stemming from known drug-protein targets, while accounting for the direction of disease modulation for coinciding entities. GenEx-TNBC successfully designated drugs, and drug classes, that were previously shown to be broadly effective or subtype-specific against TNBC, as well as novel agents. We further performed biological validation of the platform by testing the relative sensitivities of three cell lines, representing three distinct TNBC subtypes, to several small molecules according to the degree of predicted biological coincidence with each subtype. GenEx-TNBC is the first computational platform to associate drugs to diseases based on inverse relationships with multi-scale disease mechanisms mapped from global gene expression of a disease. This method may be useful for directing current efforts in preclinical drug development surrounding TNBC, and may offer insights into the targetable mechanisms of each TNBC subtype.

9.
Curr Drug Metab ; 18(6): 556-565, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28302026

RESUMO

BACKGROUND: While establishing efficacy in translational models and humans through clinically-relevant endpoints for disease is of great interest, assessing the potential toxicity of a putative therapeutic drug is critical. Toxicological assessments in the pre-clinical discovery phase help to avoid future failure in the clinical phases of drug development. Many in vitro assays exist to aid in modular toxicological assessment, such as hepatotoxicity and genotoxicity. While these methods have provided tremendous insight into human toxicity by investigational new drugs, they are expensive, require substantial resources, and do not account for pharmacogenomics as well as critical ADME properties. Computational tools can fill this niche in toxicology if in silico models are accurate in relating drug molecular properties to toxicological endpoints as well as reliable in predicting important drug-target interactions that mediate known adverse events or adverse outcome pathways (AOPs). METHODS: We undertook an unstructured search of multiple bibliographic databases for peer-reviewed literature regarding computational methods in predictive toxicology for in silico drug discovery. As this review paper is meant to serve as a survey of available methods for the interested reader, no focused criteria were applied. Literature chosen was based on the writers' expertise and intent in communicating important aspects of in silico toxicology to the interested reader. CONCLUSION: This review provides a purview of computational methods of pre-clinical toxicologic assessments for novel small molecule drugs that may be of use for novice and experienced investigators as well as academic and commercial drug discovery entities.


Assuntos
Descoberta de Drogas , Preparações Farmacêuticas/metabolismo , Animais , Humanos , Modelos Moleculares , Toxicologia
10.
Curr Med Chem ; 24(16): 1705-1720, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27978797

RESUMO

The field of systems biology, termed systems toxicology when applied to the characterization of adverse outcomes following chemical exposure, seeks to develop biological networks to explain phenotypic responses. Ideally, these are qualitatively and quantitatively similar to the actual network of biological entities that have functional consequences in living organisms. In this review, computational tools for predicting chemicalprotein interactions of multi-target compounds are outlined. Then, we discuss how the methods of systems toxicology currently draw on those interactions to predict resulting adverse outcomes which include diseases, adverse drug reactions, and toxic endpoints. These methods are useful for predicting the safety of drugs in drug development and the toxicity of environmental chemicals (ECs) in environmental toxicology.


Assuntos
Biologia Computacional , Bases de Dados Factuais , Modelos Biológicos , Modelos Moleculares , Proteômica , Relação Quantitativa Estrutura-Atividade
11.
Comb Chem High Throughput Screen ; 20(3): 193-207, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28024464

RESUMO

BACKGROUND: Cancer-associated metabolites result from cell-wide mechanisms of dysregulation. The field of metabolomics has sought to identify these aberrant metabolites as disease biomarkers, clues to understanding disease mechanisms, or even as therapeutic agents. OBJECTIVE: This study was undertaken to reliably predict metabolites associated with colorectal, esophageal, and prostate cancers. Metabolite and disease biological action networks were compared in a computational platform called MSD-MAP (Multi Scale Disease-Metabolite Association Platform). METHODS: Using differential gene expression analysis with patient-based RNAseq data from The Cancer Genome Atlas, genes up- or down-regulated in cancer compared to normal tissue were identified. Relational databases were used to map biological entities including pathways, functions, and interacting proteins, to those differential disease genes. Similar relational maps were built for metabolites, stemming from known and in silico predicted metabolite-protein associations. The hypergeometric test was used to find statistically significant relationships between disease and metabolite biological signatures at each tier, and metabolites were assessed for multi-scale association with each cancer. Metabolite networks were also directly associated with various other diseases using a disease functional perturbation database. RESULTS: Our platform recapitulated metabolite-disease links that have been empirically verified in the scientific literature, with network-based mapping of jointly-associated biological activity also matching known disease mechanisms. This was true for colorectal, esophageal, and prostate cancers, using metabolite action networks stemming from both predicted and known functional protein associations. CONCLUSION: By employing systems biology concepts, MSD-MAP reliably predicted known cancermetabolite links, and may serve as a predictive tool to streamline conventional metabolomic profiling methodologies.


Assuntos
Metabolômica/métodos , Neoplasias/metabolismo , Biologia de Sistemas , Neoplasias Colorretais/metabolismo , Biologia Computacional , Bases de Dados Factuais , Neoplasias Esofágicas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/metabolismo
12.
BMC Bioinformatics ; 17(1): 202, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27151405

RESUMO

BACKGROUND: The targeting of disease-related proteins is important for drug discovery, and yet target-based discovery has not been fruitful. Contextualizing overall biological processes is critical to formulating successful drug-disease hypotheses. Network pharmacology helps to overcome target-based bottlenecks through systems biology analytics, such as protein-protein interaction (PPI) networks and pathway regulation. RESULTS: We present a systems polypharmacology platform entitled DrugGenEx-Net (DGE-NET). DGE-NET predicts empirical drug-target (DT) interactions, integrates interaction pairs into a multi-tiered network analysis, and ultimately predicts disease-specific drug polypharmacology through systems-based gene expression analysis. Incorporation of established biological network annotations for protein target-disease, -signaling pathway, -molecular function, and protein-protein interactions enhances predicted DT effects on disease pathophysiology. Over 50 drug-disease and 100 drug-pathway predictions are validated. For example, the predicted systems pharmacology of the cholesterol-lowering agent ezetimibe corroborates its potential carcinogenicity. When disease-specific gene expression analysis is integrated, DGE-NET prioritizes known therapeutics/experimental drugs as well as their contra-indications. Proof-of-concept is established for immune-related rheumatoid arthritis and inflammatory bowel disease, as well as neuro-degenerative Alzheimer's and Parkinson's diseases. CONCLUSIONS: DGE-NET is a novel computational method that predicting drug therapeutic and counter-therapeutic indications by uniquely integrating systems pharmacology with gene expression analysis. DGE-NET correctly predicts various drug-disease indications by linking the biological activity of drugs and diseases at multiple tiers of biological action, and is therefore a useful approach to identifying drug candidates for re-purposing.


Assuntos
Biologia Computacional/métodos , Interações Medicamentosas , Reposicionamento de Medicamentos , Regulação da Expressão Gênica , Software , Biologia de Sistemas/métodos , Bases de Dados como Assunto , Doença , Humanos , Mapas de Interação de Proteínas , Proteínas/metabolismo , Reprodutibilidade dos Testes
13.
Curr Pharm Des ; 22(21): 3097-108, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26907947

RESUMO

The ascent of polypharmacology in drug development has many implications for disease therapy, most notably in the efforts of drug discovery, drug repositioning, precision medicine and combination therapy. The single- target approach to drug development has encountered difficulties in predicting drugs that are both clinically efficacious and avoid toxicity. By contrast, polypharmacology offers the possibility of a controlled distribution of effects on a biological system. This review addresses possibilities and bottlenecks in the efficient computational application of polypharmacology. The two major areas we address are the discovery and prediction of multiple protein targets using the tools of computer-aided drug design, and the use of these protein targets in predicting therapeutic potential in the context of biological networks. The successful application of polypharmacology to systems biology and pharmacology has the potential to markedly accelerate the pace of development of novel therapies for multiple diseases, and has implications for the intellectual property landscape, likely requiring targeted changes in patent law.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Polifarmacologia , Biologia de Sistemas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...