Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3826, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444355

RESUMO

Optically pure alcohols are abundant in nature and attractive as feedstock for organic synthesis but challenging for further transformation using atom efficient and sustainable methodologies, particularly when there is a desire to conserve the chirality. Usually, substitution of the OH group of stereogenic alcohols with conservation of chirality requires derivatization as part of a complex, stoichiometric procedure. We herein demonstrate that a simple, inexpensive, and environmentally benign iron(III) catalyst promotes the direct intramolecular substitution of enantiomerically enriched secondary and tertiary alcohols with O-, N-, and S-centered nucleophiles to generate valuable 5-membered, 6-membered and aryl-fused 6-membered heterocyclic compounds with chirality transfer and water as the only byproduct. The power of the methodology is demonstrated in the total synthesis of (+)-lentiginosine from D-glucose where iron-catalysis is used in a key step. Adoption of this methodology will contribute towards the transition to sustainable and bio-based processes in the pharmaceutical and agrochemical industries.

2.
J Org Chem ; 84(17): 11219-11227, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31385499

RESUMO

Chiral α-sulfenylated ketones are versatile building blocks, although there are still several limitations with their preparation. Here we report a new two-step procedure, consisting of Pd-catalyzed hydrothiolation of propargylic alcohols followed by an enantioselective Rh isomerization of allylic alcohols. The isomerization reaction is the key step for obtaining the ketones in their enantioenriched form. The new methodology has a high atom economy and induces good to high levels of enantioselectivity; no waste is produced. A mechanism involving a Rh-hydride-enone intermediate is proposed for the isomerization reaction.

3.
Org Lett ; 16(21): 5556-9, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25325145

RESUMO

An atom-efficient synthesis of keto thioethers was devised via tandem gold/palladium catalysis. The reaction proceeds through a regioselective thiol attack at the ß-position of the alcohol, followed by an alkyl, aryl, or benzyl 1,2-shift. Both acyclic and cyclic systems were studied, in the latter case leading to the ring expansion of cyclic substrates.


Assuntos
Compostos de Benzil/química , Ouro/química , Paládio/química , Sulfetos/síntese química , Catálise , Ciclização , Estrutura Molecular , Sulfetos/química
4.
Chemistry ; 20(8): 2159-63, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24478141

RESUMO

An efficient and highly atom-economical tandem Pd/Au-catalyzed route to α-sulfenylated carbonyl compounds from terminal propargylic alcohols and thiols has been developed. This one-step procedure has a wide substrate scope with respect to substituents at the α-position of the alcohol. Both aromatic and aliphatic thiols generated the α-sulfenylated carbonyl products in good to excellent yields. A mechanism is proposed in which the reaction proceeds through a Pd-catalyzed regioselective hydrothiolation at the terminal triple bond of the propargyl alcohol followed by an Au-catalyzed 1,2-hydride migration.

5.
Chemistry ; 19(52): 17939-50, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24272980

RESUMO

Gold(I)-chloride-catalyzed synthesis of α-sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols showed a wide substrate scope with respect to both propargylic alcohols and aryl thiols. Primary and secondary aromatic propargylic alcohols generated α-sulfenylated aldehydes and ketones in 60-97% yield. Secondary aliphatic propargylic alcohols generated α-sulfenylated ketones in yields of 47-71%. Different gold sources and ligand effects were studied, and it was shown that gold(I) chloride gave the highest product yields. Experimental and theoretical studies demonstrated that the reaction proceeds in two separate steps. A sulfenylated allylic alcohol, generated by initial regioselective attack of the aryl thiol on the triple bond of the propargylic alcohol, was isolated, evaluated, and found to be an intermediate in the reaction. Deuterium labeling experiments showed that the protons from the propargylic alcohol and aryl thiol were transferred to the 3-position, and that the hydride from the alcohol was transferred to the 2-position of the product. Density functional theory (DFT) calculations showed that the observed regioselectivity of the aryl thiol attack towards the 2-position of propargylic alcohol was determined by a low-energy, five-membered cyclic protodeauration transition state instead of the strained, four-membered cyclic transition state found for attack at the 3-position. Experimental data and DFT calculations supported that the second step of the reaction is initiated by protonation of the double bond of the sulfenylated allylic alcohol with a proton donor coordinated to gold(I) chloride. This in turn allows for a 1,2-hydride shift, generating the final product of the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA