Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Educ Perioper Med ; 26(1): E720, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516146

RESUMO

Background: Academic inquiry is foundational to the advancement of medicine and resident training and must be demonstrated to the Accreditation Council for Graduate Medical Education. Past attempts at increasing publication rates have failed to identify educational best practice models. Our aim was to increase resident publication rates via culture and value changes that are universally implementable, affordable, effective, and sustainable. Methods: In 2018, a multifaceted initiative was implemented to shift departmental values and foster a culture of academic productivity. This culture change stressed the value of scientific publication through frequent, consistent messaging from department leaders. In addition, residents were provided the freedom to choose their scholarly activities. In this retrospective cohort innovation, resident authors were identified for 4 academic years before and after the intervention and publication rates were determined (2014-2018 vs 2018-2022). Resident authors and publications per resident per year were compared using descriptive statistics and Student t test. Results: The pre- and postintervention groups included 38 and 37 residents, respectively. Resident-authored publications increased from 7 preintervention to 24 postintervention, representing 343% of baseline. Mean ± SD publications per resident per year similarly increased 357% from 0.183 ± 0.16 to 0.654 ± 0.11 postintervention. Unpaired t test analysis demonstrated a significant difference in total publications per year (P = .002) and authorship rate (P = .003). Conclusions: A multifaceted academic initiative resulted in a threefold increase in resident publication rates. This initiative demonstrates that local advocacy by leaders, freedom of choice for authors, and supportive departmental culture are driving factors in publication rates.

2.
EMBO J ; 43(1): 1-13, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177311

RESUMO

The Sec translocon is a highly conserved membrane assembly for polypeptide transport across, or into, lipid bilayers. In bacteria, secretion through the core channel complex-SecYEG in the inner membrane-is powered by the cytosolic ATPase SecA. Here, we use single-molecule fluorescence to interrogate the conformational state of SecYEG throughout the ATP hydrolysis cycle of SecA. We show that the SecYEG channel fluctuations between open and closed states are much faster (~20-fold during translocation) than ATP turnover, and that the nucleotide status of SecA modulates the rates of opening and closure. The SecY variant PrlA4, which exhibits faster transport but unaffected ATPase rates, increases the dwell time in the open state, facilitating pre-protein diffusion through the pore and thereby enhancing translocation efficiency. Thus, rapid SecYEG channel dynamics are allosterically coupled to SecA via modulation of the energy landscape, and play an integral part in protein transport. Loose coupling of ATP-turnover by SecA to the dynamic properties of SecYEG is compatible with a Brownian-rachet mechanism of translocation, rather than strict nucleotide-dependent interconversion between different static states of a power stroke.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Canais de Translocação SEC/química , Proteínas SecA/metabolismo , Proteínas de Bactérias/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Transporte Proteico , Nucleotídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo
3.
Sci Data ; 10(1): 403, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353539

RESUMO

A network of autonomous, ice-tethered buoys was deployed around the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) experiment in late September 2019 for a year-long drift in the Arctic Transpolar Drift Stream. The buoys were deployed as part of the MOSAiC distributed network (DN) which included 12 multi-instrumented ice stations and an additional 116 GPS buoys distributed primarily within a 40 km radius of the MOSAiC Central Observatory. Buoy coverage within the DN was maintained with additional deployments throughout the year-long drift allowing for collection of data over a full sea ice growth and melt cycle. All GPS position data from buoys deployed within the DN have been assembled and processed into the collection of 216 quality-controlled buoy drift tracks presented in this dataset covering the period 26 September 2019 - 23 May 2021. The drift tracks in this collection are ideal for studies of dynamic sea ice motion around the MOSAiC experiment at cascading spatial scales ranging from 100s of meters to 100s of km.

4.
Microbiology (Reading) ; 168(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36260397

RESUMO

The Gram-negative bacterial envelope is the first line of defence against environmental stress and antibiotics. Therefore, its biogenesis is of considerable fundamental interest, as well as a challenge to address the growing problem of antimicrobial resistance. All bacterial proteins are synthesised in the cytosol, so inner- and outer-membrane proteins, and periplasmic residents have to be transported to their final destinations via specialised protein machinery. The Sec translocon, a ubiquitous integral inner-membrane (IM) complex, is key to this process as the major gateway for protein transit from the cytosol to the cell envelope; this can be achieved during their translation, or afterwards. Proteins need to be directed into the inner-membrane (usually co-translational), otherwise SecA utilises ATP and the proton-motive-force (PMF) to drive proteins across the membrane post-translationally. These proteins are then picked up by chaperones for folding in the periplasm, or delivered to the ß-barrel assembly machinery (BAM) for incorporation into the outer-membrane. The core hetero-trimeric SecYEG-complex forms the hub for an extensive network of interactions that regulate protein delivery and quality control. Here, we conduct a biochemical exploration of this 'secretosome' -a very large, versatile and inter-changeable assembly with the Sec-translocon at its core; featuring interactions that facilitate secretion (SecDF), inner- and outer-membrane protein insertion (respectively, YidC and BAM), protein folding and quality control (e.g. PpiD, YfgM and FtsH). We propose the dynamic interplay amongst these, and other factors, act to ensure efficient envelope biogenesis, regulated to accommodate the requirements of cell elongation and division. We believe this organisation is critical for cell wall biogenesis and remodelling and thus its perturbation could be a means for the development of anti-microbials.


Assuntos
Anti-Infecciosos , Proteínas de Escherichia coli , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Prótons , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Trifosfato de Adenosina , Controle de Qualidade , Antibacterianos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
5.
Elife ; 112022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486093

RESUMO

Transport of proteins across and into membranes is a fundamental biological process with the vast majority being conducted by the ubiquitous Sec machinery. In bacteria, this is usually achieved when the SecY-complex engages the cytosolic ATPase SecA (secretion) or translating ribosomes (insertion). Great strides have been made towards understanding the mechanism of protein translocation. Yet, important questions remain - notably, the nature of the individual steps that constitute transport, and how the proton-motive force (PMF) across the plasma membrane contributes. Here, we apply a recently developed high-resolution protein transport assay to explore these questions. We find that pre-protein transport is limited primarily by the diffusion of arginine residues across the membrane, particularly in the context of bulky hydrophobic sequences. This specific effect of arginine, caused by its positive charge, is mitigated for lysine which can be deprotonated and transported across the membrane in its neutral form. These observations have interesting implications for the mechanism of protein secretion, suggesting a simple mechanism through which the PMF can aid transport by enabling a 'proton ratchet', wherein re-protonation of exiting lysine residues prevents channel re-entry, biasing transport in the outward direction.


Assuntos
Proteínas de Escherichia coli , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lisina/metabolismo , Transporte Proteico , Canais de Translocação SEC/metabolismo
6.
Faraday Discuss ; 225: 133-151, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179673

RESUMO

The metal-organic framework (Me2NH2)2[Cd(NO2BDC)2] (SHF-81) comprises flattened tetrahedral Cd(O2CR)42- nodes, in which Cd(ii) centres are linked via NO2BDC2- ligands (2-nitrobenzene-1,4-dicarboxylate) to give a doubly interpenetrated anionic network, with charge balanced by two Me2NH2+ cations per Cd centre resident in the pores. The study establishes that this is a twinned α-quartz-type structure (trigonal, space group P3x21, x = 1 or 2), although very close to the higher symmetry ß-quartz arrangement (hexagonal, P6x22, x = 2 or 4) in its as-synthesised solvated form [Cd(NO2BDC)2]·2DMF·0.5H2O (SHF-81-DMF). The activated MOF exhibits very little N2 uptake at 77 K, but shows significant CO2 uptake at 273-298 K with an isosteric enthalpy of adsorption (ΔHads) at zero coverage of -27.4 kJ mol-1 determined for the MOF directly activated from SHF-81-DMF. A series of in situ diffraction experiments, both single-crystal X-ray diffraction (SCXRD) and powder X-ray diffraction (PXRD), reveal that the MOF is flexible and exhibits breathing behaviour with observed changes as large as 12% in the a- and b-axes (|Δa|, |Δb| < 1.8 Å) and 5.5% in the c-axis (|Δc| < 0.7 Å). Both the solvated SHF-81-DMF and activated/desolvated SHF-81 forms of the MOF exhibit linear negative thermal expansion (NTE), in which pores that run parallel to the c-axis expand in diameter (a- and b-axis) while contracting in length (c-axis) upon increasing temperature. Adsorption of CO2 gas at 298 K also results in linear negative expansion (Δa, Δb > 0; Δc < 0; ΔV > 0). The largest change in dimensions is observed during activation/desolvation from SHF-81-DMF to SHF-81 (Δa, Δb < 0; Δc > 0; ΔV < 0). Collectively the nine in situ diffraction experiments conducted suggest the breathing behaviour is continuous, although individual desolvation and adsorption experiments do not rule out the possibility of a gating or step at intermediate geometries that is coupled with continuous dynamic behaviour towards the extremities of the breathing amplitude.

7.
Proc Natl Acad Sci U S A ; 117(50): 31808-31816, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257538

RESUMO

The universally conserved Sec system is the primary method cells utilize to transport proteins across membranes. Until recently, measuring the activity-a prerequisite for understanding how biological systems work-has been limited to discontinuous protein transport assays with poor time resolution or reported by large, nonnatural tags that perturb the process. The development of an assay based on a split superbright luciferase (NanoLuc) changed this. Here, we exploit this technology to unpick the steps that constitute posttranslational protein transport in bacteria. Under the conditions deployed, the transport of a model preprotein substrate (proSpy) occurs at 200 amino acids (aa) per minute, with SecA able to dissociate and rebind during transport. Prior to that, there is no evidence for a distinct, rate-limiting initiation event. Kinetic modeling suggests that SecA-driven transport activity is best described by a series of large (∼30 aa) steps, each coupled to hundreds of ATP hydrolysis events. The features we describe are consistent with a nondeterministic motor mechanism, such as a Brownian ratchet.


Assuntos
Trifosfato de Adenosina/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Modelos Biológicos , Proteínas SecA/metabolismo , Bactérias/citologia , Bioensaio/métodos , Hidrólise , Cinética , Bicamadas Lipídicas/metabolismo , Luciferases/química
8.
J Am Chem Soc ; 142(49): 20640-20650, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33252237

RESUMO

Controlling the assembly and disassembly of nanoscale protein cages for the capture and internalization of protein or non-proteinaceous components is fundamentally important to a diverse range of bionanotechnological applications. Here, we study the reversible, pressure-induced dissociation of a natural protein nanocage, E. coli bacterioferritin (Bfr), using synchrotron radiation small-angle X-ray scattering (SAXS) and circular dichroism (CD). We demonstrate that hydrostatic pressures of 450 MPa are sufficient to completely dissociate the Bfr 24-mer into protein dimers, and the reversibility and kinetics of the reassembly process can be controlled by selecting appropriate buffer conditions. We also demonstrate that the heme B prosthetic group present at the subunit dimer interface influences the stability and pressure lability of the cage, despite its location being discrete from the interdimer interface that is key to cage assembly. This indicates a major cage-stabilizing role for heme within this family of ferritins.


Assuntos
Proteínas de Bactérias/metabolismo , Grupo dos Citocromos b/metabolismo , Escherichia coli/metabolismo , Ferritinas/metabolismo , Proteínas de Bactérias/química , Dicroísmo Circular , Grupo dos Citocromos b/química , Dimerização , Ferritinas/química , Pressão Hidrostática , Cinética , Espalhamento a Baixo Ângulo , Termodinâmica , Difração de Raios X
9.
Elife ; 92020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33146611

RESUMO

The outer-membrane of Gram-negative bacteria is critical for surface adhesion, pathogenicity, antibiotic resistance and survival. The major constituent - hydrophobic ß-barrel Outer-Membrane Proteins (OMPs) - are first secreted across the inner-membrane through the Sec-translocon for delivery to periplasmic chaperones, for example SurA, which prevent aggregation. OMPs are then offloaded to the ß-Barrel Assembly Machinery (BAM) in the outer-membrane for insertion and folding. We show the Holo-TransLocon (HTL) - an assembly of the protein-channel core-complex SecYEG, the ancillary sub-complex SecDF, and the membrane 'insertase' YidC - contacts BAM through periplasmic domains of SecDF and YidC, ensuring efficient OMP maturation. Furthermore, the proton-motive force (PMF) across the inner-membrane acts at distinct stages of protein secretion: (1) SecA-driven translocation through SecYEG and (2) communication of conformational changes via SecDF across the periplasm to BAM. The latter presumably drives efficient passage of OMPs. These interactions provide insights of inter-membrane organisation and communication, the importance of which is becoming increasingly apparent.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas da Membrana Bacteriana Externa/genética , Sistemas de Secreção Bacterianos/genética , Modelos Moleculares , Conformação Proteica , Transporte Proteico
10.
Methods Mol Biol ; 2168: 273-297, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33582997

RESUMO

Single-molecule techniques provide insights into the heterogeneity and dynamics of ensembles and enable the extraction of mechanistic information that is complementary to high-resolution structural techniques. Here, we describe the application of single-molecule Förster resonance energy transfer to study the dynamics of integral membrane protein complexes on timescales spanning sub-milliseconds to minutes (10-9-102 s).


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Fluorescência , Proteínas de Membrana/análise , Imagem Individual de Molécula/métodos , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Conformação Proteica
11.
Adv Sci (Weinh) ; 8(1): 2003167, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437587

RESUMO

Fluorescent proteins (FPs) are commonly used in pairs to monitor dynamic biomolecular events through changes in proximity via distance dependent processes such as Förster resonance energy transfer (FRET). The impact of FP association is assessed by predicting dimerization sites in silico and stabilizing the dimers by bio-orthogonal covalent linkages. In each tested case dimerization changes inherent fluorescence, including FRET. GFP homodimers demonstrate synergistic behavior with the dimer being brighter than the sum of the monomers. The homodimer structure reveals the chromophores are close with favorable transition dipole alignments and a highly solvated interface. Heterodimerization (GFP with Venus) results in a complex with ≈87% FRET efficiency, significantly below the 99.7% efficiency predicted. A similar efficiency is observed when the wild-type FPs are fused to a naturally occurring protein-protein interface system. GFP complexation with mCherry results in loss of mCherry fluorescence. Thus, simple assumptions used when monitoring interactions between proteins via FP FRET may not always hold true, especially under conditions whereby the protein-protein interactions promote FP interaction.

12.
J Mol Biol ; 431(8): 1689-1699, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30878481

RESUMO

Protein translocation is a fundamental process in biology. Major gaps in our understanding of this process arise due the poor sensitivity, low time resolution and irreproducibility of translocation assays. To address this, we applied NanoLuc split-luciferase to produce a new strategy for measuring protein transport. The system reduces the timescale of data collection from days to minutes and allows for continuous acquisition with a time resolution in the order of seconds, yielding kinetics parameters suitable for mechanistic elucidation and mathematical fitting. To demonstrate its versatility, we implemented and validated the assay in vitro and in vivo for the bacterial Sec system and the mitochondrial protein import apparatus. Overall, this technology represents a major step forward, providing a powerful new tool for fundamental mechanistic enquiry of protein translocation and for inhibitor (drug) screening, with an intensity and rigor unattainable through classical methods.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Membranas Mitocondriais/metabolismo , Canais de Translocação SEC/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Infecções por Escherichia coli/microbiologia , Humanos , Luciferases/metabolismo , Substâncias Luminescentes/metabolismo , Medições Luminescentes/métodos , Transporte Proteico
13.
Proc Natl Acad Sci U S A ; 115(31): 7967-7972, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012626

RESUMO

The transport of proteins across or into membranes is a vital biological process, achieved in every cell by the conserved Sec machinery. In bacteria, SecYEG combines with the SecA motor protein for secretion of preproteins across the plasma membrane, powered by ATP hydrolysis and the transmembrane proton-motive force (PMF). The activities of SecYEG and SecA are modulated by membrane lipids, particularly cardiolipin (CL), a specialized phospholipid known to associate with a range of energy-transducing machines. Here, we identify two specific CL binding sites on the Thermotoga maritima SecA-SecYEG complex, through application of coarse-grained molecular dynamics simulations. We validate the computational data and demonstrate the conserved nature of the binding sites using in vitro mutagenesis, native mass spectrometry, biochemical analysis, and fluorescence spectroscopy of Escherichia coli SecYEG. The results show that the two sites account for the preponderance of functional CL binding to SecYEG, and mediate its roles in ATPase and protein transport activity. In addition, we demonstrate an important role for CL in the conferral of PMF stimulation of protein transport. The apparent transient nature of the CL interaction might facilitate proton exchange with the Sec machinery, and thereby stimulate protein transport, by a hitherto unexplored mechanism. This study demonstrates the power of coupling the high predictive ability of coarse-grained simulation with experimental analyses, toward investigation of both the nature and functional implications of protein-lipid interactions.


Assuntos
Sistemas de Secreção Bacterianos/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Simulação de Dinâmica Molecular , Força Próton-Motriz , Canais de Translocação SEC/química , Thermotoga maritima/química , Sistemas de Secreção Bacterianos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Canais de Translocação SEC/metabolismo , Thermotoga maritima/metabolismo
14.
Elife ; 72018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29877797

RESUMO

Protein translocation across cell membranes is a ubiquitous process required for protein secretion and membrane protein insertion. In bacteria, this is mostly mediated by the conserved SecYEG complex, driven through rounds of ATP hydrolysis by the cytoplasmic SecA, and the trans-membrane proton motive force. We have used single molecule techniques to explore SecY pore dynamics on multiple timescales in order to dissect the complex reaction pathway. The results show that SecA, both the signal sequence and mature components of the pre-protein, and ATP hydrolysis each have important and specific roles in channel unlocking, opening and priming for transport. After channel opening, translocation proceeds in two phases: a slow phase independent of substrate length, and a length-dependent transport phase with an intrinsic translocation rate of ~40 amino acids per second for the proOmpA substrate. Broad translocation rate distributions reflect the stochastic nature of polypeptide transport.


Assuntos
Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Força Próton-Motriz , Canais de Translocação SEC/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrólise , Microscopia de Fluorescência/métodos , Modelos Moleculares , Mutação , Conformação Proteica , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Canais de Translocação SEC/química , Canais de Translocação SEC/genética , Proteínas SecA
15.
J Am Chem Soc ; 139(49): 17834-17840, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29148737

RESUMO

We report the site-specific coupling of single proteins to individual carbon nanotubes (CNTs) in solution and with single-molecule control. Using an orthogonal Click reaction, Green Fluorescent Protein (GFP) was engineered to contain a genetically encoded azide group and then bound to CNT ends in different configurations: in close proximity or at longer distances from the GFP's functional center. Atomic force microscopy and fluorescence analysis in solution and on surfaces at the single-protein level confirmed the importance of bioengineering optimal protein attachment sites to achieve direct protein-nanotube communication and bridging.

16.
Nat Commun ; 8(1): 358, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842561

RESUMO

Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.Catalytic mechanisms of enzymes are well understood, but achieving diverse reaction chemistries in re-engineered proteins can be difficult. Here the authors show a highly efficient and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2.


Assuntos
Peroxidase/síntese química , Engenharia de Proteínas , Sítios de Ligação , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peroxidase/química , Especificidade por Substrato
17.
Biomacromolecules ; 17(11): 3485-3492, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27650815

RESUMO

The modification of protein surfaces employing cationic and anionic species enables the assembly of these biomaterials into highly sophisticated hierarchical structures. Such modifications can allow bioconjugates to retain or amplify their functionalities under conditions in which their native structure would be severely compromised. In this work, we assess the effect of this type of bioconjugation on the redox properties of two model heme proteins, that is, cytochrome c (CytC) and myoglobin (Mb). In particular, the work focuses on the sequential modification by 3-dimethylamino propylamine (DMAPA) and 4-nonylphenyl 3-sulfopropyl ether (S1) anionic surfactant. Bioconjugation with DMAPA and S1 are the initial steps in the generation of pure liquid proteins, which remain active in the absence of water and up to temperatures above 150 °C. Thin-layer spectroelectrochemistry reveals that DMAPA cationization leads to a distribution of bioconjugate structures featuring reduction potentials shifted up to 380 mV more negative than the native proteins. Analysis based on circular dichroism, MALDI-TOF mass spectrometry, and zeta potential measurements suggest that the shift in the reduction potentials are not linked to protein denaturation, but to changes in the spin state of the heme. These alterations of the spin states originate from subtle structural changes induced by DMAPA attachment. Interestingly, electrostatic coupling of anionic surfactant S1 shifts the reduction potential closer to that of the native protein, demonstrating that the modifications of the heme electronic configuration are linked to surface charges.


Assuntos
Citocromos c/química , Heme/química , Mioglobina/química , Ânions/química , Arsenicais/química , Dicroísmo Circular , Oxirredução , Conformação Proteica/efeitos dos fármacos , Desnaturação Proteica , Eletricidade Estática , Temperatura , Água/química
18.
Pediatr Surg Int ; 32(6): 565-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27083898

RESUMO

PURPOSE: External radiation to the head and neck can lead to an increased incidence of thyroid nodules. We investigated whether patients requiring repeated head and neck imaging for the management of shunted hydrocephalus had a higher incidence of ultrasound-detected thyroid nodules compared to reports of comparable age. METHODS: Patients treated at our institution for shunted hydrocephalus from 1990 to 2003 were contacted. Enroled patients underwent a thyroid ultrasound. Demographic data and radiation exposure history were obtained retrospectively. RESULTS: Thyroid nodules were identified sonographically in 15/112 patients (13.6 %). Patients with thyroid nodules were older (mean 24.3 ± 7.6 years) than those without (mean 18.4 ± 8.0 years) (p = 0.005). Those with a detectable thyroid nodule had a longer follow up time compared to those who did not (mean 21.9 ± 5.5 vs. 15.1 ± 7 years, respectively) (p = 0.018). CONCLUSION: Patients with shunted hydrocephalus are exposed to substantial head and neck radiation from diagnostic imaging and have a higher incidence of thyroid nodules detected by ultrasonography. These patients should be provided ongoing surveillance for detection of thyroid nodules and the possibility of malignancy.


Assuntos
Derivações do Líquido Cefalorraquidiano , Hidrocefalia/diagnóstico , Lesões por Radiação/complicações , Nódulo da Glândula Tireoide/etiologia , Tomografia Computadorizada por Raios X/efeitos adversos , Adolescente , Adulto , Feminino , Humanos , Hidrocefalia/cirurgia , Incidência , Masculino , Doses de Radiação , Lesões por Radiação/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Nódulo da Glândula Tireoide/epidemiologia , Estados Unidos/epidemiologia , Adulto Jovem
19.
Biochim Biophys Acta ; 1857(5): 493-502, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26556173

RESUMO

Central to the design of an efficient de novo enzyme is a robust yet mutable protein scaffold. The maquette approach to protein design offers precisely this, employing simple four-α-helix bundle scaffolds devoid of evolutionary complexity and with proven tolerance towards iterative protein engineering. We recently described the design of C2, a de novo designed c-type cytochrome maquette that undergoes post-translational modification in E. coli to covalently graft heme onto the protein backbone in vivo. This de novo cytochrome is capable of reversible oxygen binding, an obligate step in the catalytic cycle of many oxygen-activating oxidoreductases. Here we demonstrate the flexibility of both the maquette platform and the post-translational machinery of E. coli by creating a suite of functional de novo designed c-type cytochromes. We explore the engineering tolerances of the maquette by selecting alternative binding sites for heme C attachment and creating di-heme maquettes either by appending an additional heme C binding motif to the maquette scaffold or by binding heme B through simple bis-histidine ligation to a second binding site. The new designs retain the essential properties of the parent design but with significant improvements in structural stability. Molecular dynamics simulations aid the rationalization of these functional improvements while providing insight into the rules for engineering heme C binding sites in future iterations. This versatile, functional suite of de novo c-type cytochromes shows significant promise in providing robust platforms for the future engineering of de novo oxygen-activating oxidoreductases. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electron transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.


Assuntos
Grupo dos Citocromos c/química , Oxirredutases/química , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Sítios de Ligação , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Escherichia coli , Heme/análogos & derivados , Heme/química , Heme/metabolismo , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredutases/genética , Oxirredutases/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Homologia de Sequência de Aminoácidos
20.
Pediatr Surg Int ; 31(3): 241-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25633156

RESUMO

PURPOSE: Penetrating thoracic trauma is relatively rare in the pediatric population. Embolization of foreign bodies from penetrating trauma is very uncommon. We present a case of a 6-year-old boy with a penetrating foreign body from a projectile dislodged from a lawn mower. Imaging demonstrated a foreign body that embolized to the left pulmonary artery, which was successfully treated non-operatively. METHODS: We reviewed the penetrating thoracic trauma patients in the trauma registry at our institution between 1/1/03 and 12/31/12. Data collected included demographic data, procedures performed, complications and outcome. RESULTS: Sixty-five patients were identified with a diagnosis of penetrating thoracic trauma. Fourteen of the patients had low velocity penetrating trauma and 51 had high velocity injuries. Patients with high velocity injuries were more likely to be older and less likely to be Caucasian. There were no statistically significant differences between patients with low vs. high velocity injuries regarding severity scores or length of stay. There were no statistically significant differences in procedures required between patients with low and high velocity injuries. CONCLUSIONS: Penetrating thoracic trauma is rare in children. The case presented here represents the only report of cardiac foreign body embolus we could identify in a pediatric patient.


Assuntos
Corpos Estranhos/diagnóstico por imagem , Embolia Pulmonar/diagnóstico por imagem , Ferimentos Penetrantes/diagnóstico por imagem , Adolescente , Adulto , Criança , Pré-Escolar , Drenagem , Feminino , Seguimentos , Humanos , Lactente , Tempo de Internação , Masculino , Embolia Pulmonar/terapia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Ultrassonografia de Intervenção , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...