Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 19(9): 3125-3138, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35913984

RESUMO

Natural killer (NK) cells are an important member of the innate immune system and can participate in direct tumor cell killing in response to immunotherapies. One class of immunotherapy is stimulator of interferon gene (STING) agonists, which result in a robust type I interferon (IFN-I) response. Most mechanistic studies involving STING have focused on macrophages and T cells. Nevertheless, NK cells are also activated by IFN-I, but the effect of STING activation on NK cells remains to be adequately investigated. We show that both direct treatment with soluble STING agonist cyclic di-guanosine monophosphate-adenosine monophosphate (cGAMP) and indirect treatment with cGAMP encapsulated in microparticles (MPs) result in NK cell activation in vitro, although the former requires 100× more cGAMP than the latter. Additionally, direct activation with cGAMP leads to NK cell death. Indirect activation with cGAMP MPs does not result in NK cell death but rather cell activation and cell killing in vitro. In vivo, treatment with soluble cGAMP and cGAMP MPs both cause short-term activation, whereas only cGAMP MP treatment produces long-term changes in NK cell activation markers. Thus, this work indicates that treatment with an encapsulated STING agonist activates NK cells more efficiently than that with soluble cGAMP. In both the in vitro and in vivo systems, the MP delivery system results in more robust effects at a greatly reduced dosage. These results have potential applications in aiding the improvement of cancer immunotherapies.


Assuntos
Células Matadoras Naturais , Proteínas de Membrana , Animais , Células Apresentadoras de Antígenos/metabolismo , Imunoterapia , Células Matadoras Naturais/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
2.
Biomaterials ; 205: 94-105, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30909112

RESUMO

Immunotherapies have significantly improved cancer patient survival, but response rates are still limited. Thus, novel formulations are needed to expand the breadth of immunotherapies. Pathogen associated molecular patterns (PAMPs) can be used to stimulate an immune response, but several pathogen recognition receptors are located within the cell, making delivery challenging. We have employed the biodegradable polymer acetalated dextran (Ace-DEX) to formulate PAMP microparticles (MPs) in order to enhance intracellular delivery. While treatment with four different PAMP MPs resulted in tumor growth inhibition, cyclic GMP-AMP (cGAMP) MPs were most effective. cGAMP MPs showed anti-tumor efficacy at doses 100-1000 fold lower than published doses of soluble cGAMP in two murine tumor models. Treatment with cGAMP MPs resulted in increased natural killer cell numbers in the tumor environment. Immune cell depletion studies confirmed that NK cells were responsible for the anti-tumor efficacy in an aggressive mouse melanoma model. NK cells and CD8+ T cells were both required for early anti-tumor function in a triple negative breast cancer model. In summary, cGAMP MP treatment results in NK and T cell-dependent anti-tumor immune response.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade , Imunoterapia , Proteínas de Membrana/metabolismo , Microesferas , Neoplasias/imunologia , Neoplasias/terapia , Acetilação , Animais , Dextranos/química , Modelos Animais de Doenças , Hidrodinâmica , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Melanoma/imunologia , Melanoma/patologia , Melanoma/terapia , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Nucleotídeos Cíclicos/farmacologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia , Carga Tumoral/efeitos dos fármacos
3.
JCI Insight ; 3(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30429378

RESUMO

Triple-negative breast cancer (TNBC) has few therapeutic options, and alternative approaches are urgently needed. Stimulator of IFN genes (STING) is becoming an exciting target for therapeutic adjuvants. However, STING resides inside the cell, and the intracellular delivery of CDNs, such as cGAMP, is required for the optimal activation of STING. We show that liposomal nanoparticle-delivered cGAMP (cGAMP-NP) activates STING more effectively than soluble cGAMP. These particles induce innate and adaptive host immune responses to preexisting tumors in both orthotopic and genetically engineered models of basal-like TNBC. cGAMP-NPs also reduce melanoma tumor load, with limited responsivity to anti-PD-L1. Within the tumor microenvironment, cGAMP-NPs direct both mouse and human macrophages (M), reprograming from protumorigenic M2-like phenotype toward M1-like phenotype; enhance MHC and costimulatory molecule expression; reduce M2 biomarkers; increase IFN-γ-producing T cells; augment tumor apoptosis; and increase CD4+ and CD8+ T cell infiltration. Activated T cells are required for tumor suppression, as their depletion reduces antitumor activity. Importantly, cGAMP-NPs prevent the formation of secondary tumors, and a single dose is sufficient to inhibit TNBC. These data suggest that a minimal system comprised of cGAMP-NP alone is sufficient to modulate the tumor microenvironment to effectively control PD-L1-insensitive TNBC.


Assuntos
Antígeno B7-H1/imunologia , Proteínas de Membrana/genética , Nanopartículas/uso terapêutico , Nucleotídeos Cíclicos/farmacologia , Neoplasias de Mama Triplo Negativas/imunologia , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Imunoterapia , Interferon Tipo I/genética , Lipossomos , Macrófagos/imunologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Nucleotídeos Cíclicos/administração & dosagem , Linfócitos T/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia
4.
J Control Release ; 270: 1-13, 2018 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29170142

RESUMO

Most FDA-approved adjuvants for infectious agents boost humoral but not cellular immunity, and have poorly-understood mechanisms. Stimulator of interferon genes (STING, also known as MITA, MPYS, or ERIS) is an exciting adjuvant target due to its role in cyclic dinucleotide (CDN)-driven anti-viral immunity; however, a major hindrance is STING's cytosolic localization which requires intracellular delivery of its agonists. As a result, STING agonists administered in a soluble form have elicited suboptimal immune responses. Delivery of STING agonists via particle platforms has proven a more successful strategy, but the opportunity for improved formulations and bioactivity remains. In this study we evaluated the adjuvant activity of the potent STING agonist, CDN 3'3'-cGAMP (cGAMP), encapsulated in acid-sensitive acetalated dextran (Ace-DEX) polymeric microparticles (MPs) which passively target antigen-presenting cells for intracellular release. This formulation was superior to all particle delivery systems evaluated and maintained its bioactivity following a sterilizing dose of gamma irradiation. Compared to soluble cGAMP, the Ace-DEX cGAMP MPs enhanced type-I interferon responses nearly 1000-fold in vitro and 50-fold in vivo, caused up to a 104-fold boost in antibody titers, increased Th1-associated responses, and expanded germinal center B cells and memory T cells. Furthermore, the encapsulated cGAMP elicited no observable toxicity in animals and achieved protective immunity against a lethal influenza challenge seven months post-immunization when using CDN adjuvant doses up to 100-fold lower than previous reports. For these reasons, Ace-DEX MP-encapsulated cGAMP represents a potent vaccine adjuvant of humoral and cellular immunity.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Proteínas de Membrana/imunologia , Nucleotídeos Cíclicos/administração & dosagem , Animais , Células Cultivadas , Dextranos/administração & dosagem , Feminino , Imunidade Celular , Imunidade Humoral , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...