Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36151725

RESUMO

Accurately identifying cell-populations is paramount to the quality of downstream analyses and overall interpretations of single-cell RNA-seq (scRNA-seq) datasets but remains a challenge. The quality of single-cell clustering depends on the proximity metric used to generate cell-to-cell distances. Accordingly, proximity metrics have been benchmarked for scRNA-seq clustering, typically with results averaged across datasets to identify a highest performing metric. However, the 'best-performing' metric varies between studies, with the performance differing significantly between datasets. This suggests that the unique structural properties of an scRNA-seq dataset, specific to the biological system under study, have a substantial impact on proximity metric performance. Previous benchmarking studies have omitted to factor the structural properties into their evaluations. To address this gap, we developed a framework for the in-depth evaluation of the performance of 17 proximity metrics with respect to core structural properties of scRNA-seq data, including sparsity, dimensionality, cell-population distribution and rarity. We find that clustering performance can be improved substantially by the selection of an appropriate proximity metric and neighbourhood size for the structural properties of a dataset, in addition to performing suitable pre-processing and dimensionality reduction. Furthermore, popular metrics such as Euclidean and Manhattan distance performed poorly in comparison to several lessor applied metrics, suggesting that the default metric for many scRNA-seq methods should be re-evaluated. Our findings highlight the critical nature of tailoring scRNA-seq analyses pipelines to the dataset under study and provide practical guidance for researchers looking to optimize cell-similarity search for the structural properties of their own data.


Assuntos
Benchmarking , Análise de Célula Única , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , RNA-Seq , Análise por Conglomerados , Algoritmos
2.
Front Mol Biosci ; 8: 768106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111809

RESUMO

Integrating single cell omics and single cell imaging allows for a more effective characterisation of the underlying mechanisms that drive a phenotype at the tissue level, creating a comprehensive profile at the cellular level. Although the use of imaging data is well established in biomedical research, its primary application has been to observe phenotypes at the tissue or organ level, often using medical imaging techniques such as MRI, CT, and PET. These imaging technologies complement omics-based data in biomedical research because they are helpful for identifying associations between genotype and phenotype, along with functional changes occurring at the tissue level. Single cell imaging can act as an intermediary between these levels. Meanwhile new technologies continue to arrive that can be used to interrogate the genome of single cells and its related omics datasets. As these two areas, single cell imaging and single cell omics, each advance independently with the development of novel techniques, the opportunity to integrate these data types becomes more and more attractive. This review outlines some of the technologies and methods currently available for generating, processing, and analysing single-cell omics- and imaging data, and how they could be integrated to further our understanding of complex biological phenomena like ageing. We include an emphasis on machine learning algorithms because of their ability to identify complex patterns in large multidimensional data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...