Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 32(3): e2544, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080801

RESUMO

In the United States, the Bald and Golden Eagle Protection Act prohibits take of golden eagles (Aquila chrysaetos) unless authorized by permit, and stipulates that all permitted take must be sustainable. Golden eagles are unintentionally killed in conjunction with many lawful activities (e.g., electrocution on power poles, collision with wind turbines). Managers who issue permits for incidental take of golden eagles must determine allowable take levels and manage permitted take accordingly. To aid managers in making these decisions in the western United States, we used an integrated population model to obtain estimates of golden eagle vital rates and population size, and then used those estimates in a prescribed take level (PTL) model to estimate the allowable take level. Estimated mean annual survival rates for golden eagles ranged from 0.70 (95% credible interval = 0.66-0.74) for first-year birds to 0.90 (0.88-0.91) for adults. Models suggested a high proportion of adult female golden eagles attempted to breed and breeding pairs fledged a mean of 0.53 (0.39-0.72) young annually. Population size in the coterminous western United States has averaged ~31,800 individuals for several decades, with λ = 1.0 (0.96-1.05). The PTL model estimated a median allowable take limit of ~2227 (708-4182) individuals annually given a management objective of maintaining a stable population. We estimate that take averaged 2572 out of 4373 (59%) deaths annually, based on a representative sample of transmitter-tagged golden eagles. For the subset of golden eagles that were recovered and a cause of death determined, anthropogenic mortality accounted for an average of 74% of deaths after their first year; leading forms of take over all age classes were shooting (~670 per year), collisions (~611), electrocutions (~506), and poisoning (~427). Although observed take overlapped the credible interval of our allowable take estimate and the population overall has been stable, our findings indicate that additional take, unless mitigated for, may not be sustainable. Our analysis demonstrates the utility of the joint application of integrated population and prescribed take level models to management of incidental take of a protected species.


Assuntos
Águias , Fatores Etários , Animais , Causas de Morte , Feminino , Humanos , Propilaminas , Sulfetos , Taxa de Sobrevida , Estados Unidos
2.
Ecol Evol ; 9(7): 3850-3867, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31015971

RESUMO

Bald eagle (Haliaeetus leucocephalus) populations in North America rebounded in the latter part of the twentieth century, the result of tightened protection and outlawing of pesticides such as DDT. An unintended consequence of recovery may be a negative impact on seabirds. During the 1980s, few bald eagles disturbed a large glaucous-winged gull (Larus glaucescens) colony on Protection Island, Washington, USA, in the Salish Sea. Breeding gull numbers in this colony rose nearly 50% during the 1980s and early 1990s. Beginning in the 1990s, a dramatic increase in bald eagle activity ensued within the colony, after which began a significant decline in gull numbers.To examine whether trends in the gull colony could be explained by eagle activity, we fit a Lotka-Volterra-type predator-prey model to gull nest count data and Washington State eagle territory data collected in most years between 1980 and 2016. Both species were assumed to grow logistically in the absence of the other.The model fits the data with generalized R 2 = 0.82, supporting the hypothesis that gull dynamics were due largely to eagle population dynamics.Point estimates of the model parameters indicated approach to stable coexistence. Within the 95% confidence intervals for the parameters, however, 11.0% of bootstrapped parameter vectors predicted gull colony extinction.Our results suggest that the effects of bald eagle activity on the dynamics of a large gull colony were explained by a predator-prey relationship that included the possibility of coexistence but also the possibility of gull colony extinction. This study serves as a cautionary exploration of the future, not only for gulls on Protection Island, but for other seabirds in the Salish Sea. Managers should monitor numbers of nests in seabird colonies as well as eagle activity within colonies to document trends that may lead to colony extinction.

3.
J Wildl Dis ; 54(4): 755-764, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29863970

RESUMO

Avian trichomonosis, caused by the protozoan Trichomonas gallinae, affects bird-eating raptors worldwide. Raptors can develop trichomonosis by feeding on infected prey, particularly Rock Pigeons (C olumba livia), which are a reservoir for T. gallinae. Raptors may be particularly vulnerable to T. gallinae infection in degraded habitats, where changes in resources may cause raptors to switch from foraging on native prey to synanthropic avian species such as Rock Pigeons. Golden Eagles ( Aquila chrysaetos) typically forage on mammals; however, habitat across much of their range is experiencing degradation through changes in land use, climate, and human encroachment. In 2015, we examined the prevalence of T. gallinae infection in Golden Eagle nestlings across western North America and conducted an intensive study on factors associated with T. gallinae infection and trichomonosis in southwestern Idaho. We found T. gallinae infection in 13% (12/96) of eagle nestlings across 10 western states and in 41% (13/32) of nestlings in southwestern Idaho. At the Idaho site, the probability of T. gallinae infection increased as the proportion of Rock Pigeons in nestling diet increased. Nestlings with diets that consisted of ≥10% Rock Pigeons had a very high probability of T. gallinae infection. We compared historical (1971-81) and recent (2014-15) diet data and incidence of trichomonosis lesions of nestling eagles in Idaho and found that the proportion of Rock Pigeons in eagle diets was higher in recent versus historical periods, as was the proportion of eagle nestlings with trichomonosis lesions. Our results suggested that localized shifts in eagle diet that result from habitat degradation and loss of historical prey resources have the potential to affect Golden Eagle nestling survival and supported the hypothesis that land use change can alter biologic communities in a way that might have consequences for disease infection and host susceptibility.


Assuntos
Doenças das Aves/parasitologia , Águias , Tricomoníase/veterinária , Trichomonas/isolamento & purificação , Animais , Doenças das Aves/epidemiologia , Columbidae , Comportamento Alimentar , Idaho/epidemiologia , Prevalência , Fatores de Risco , Tricomoníase/epidemiologia , Tricomoníase/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...