Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
2.
medRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352505

RESUMO

Background: Artemisinin partial resistance, mediated by mutations in the Plasmodium falciparum Kelch13 protein (K13), rapidly spread in South-East Asia (SEA), undermining antimalarial efficacies of artemisinin-based combination therapies (ACT). Validated K13 mutations have recently arisen in Africa, but rates of increase are not well characterized. Methods: We investigated K13 mutation prevalence at 16 sites in Uganda (2016-2022, 6586 samples), and five sites in SEA (2003-2018, 5465 samples) by calculating selection coefficients using Bayesian mixed-effect linear models. We then tested whether SEA K13 mutation prevalence could have been forecast accurately using up to the first five years of available data and forecast future K13 mutation prevalence in Uganda. Findings: The selection coefficient for the prevalence of relevant K13 mutations (441L, 469F/Y, 561H, 675V) was estimated at s=0·383 (95% CrI: 0·247 - 0·528) per year, a 38% relative prevalence increase. Selection coefficients across Uganda were s=0·968 (0·463 - 1·569) for 441L, s=0·153 (-0·445 - 0·727) for 469F, s=0·222 (-0·011 - 0·398) for 469Y, and s=0·152 (-0·023 - 0·312) for 675V. In SEA, the selection coefficient was s=-0·005 (-0·852 - 0·814) for 539T, s=0·574 (-0·092 - 1·201) for 580Y, and s=0·308 (0·089 - 0·536) for all validated K13 mutations. Forecast prevalences for Uganda assuming constant selection neared fixation (>95% prevalence) within a decade (2028-2033) for combined K13 mutations. Interpretation: The selection of K13 mutations in Uganda was at a comparable rate to that observed in SEA, suggesting K13 mutations may continue to increase quickly in Uganda. Funding: NIH R01AI156267, R01AI075045, and R01AI089674.

3.
medRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37905102

RESUMO

In the thirteen years since the first report of pfhrp2-deleted parasites in 2010, the World Health Organization (WHO) has found that 40 of 47 countries surveyed worldwide have reported pfhrp2/3 gene deletions. Due to a high prevalence of pfhrp2/3 deletions causing false-negative HRP2 RDTs, in the last five years, Eritrea, Djibouti and Ethiopia have switched or started switching to using alternative RDTs, that target pan-specific-pLDH or P. falciparum specific-pLDH alone of in combination with HRP2. However, manufacturing of alternative RDTs has not been brought to scale and there are no WHO prequalified combination tests that use Pf-pLDH instead of HRP2 for P. falciparum detection. For these reasons, the continued spread of pfhrp2/3 deletions represents a growing public health crisis that threatens efforts to control and eliminate P. falciparum malaria. National malaria control programmes, their implementing partners and test developers desperately seek pfhrp2/3 deletion data that can inform their immediate and future resource allocation. In response, we use a mathematical modelling approach to evaluate the global risk posed by pfhrp2/3 deletions and explore scenarios for how deletions will continue to spread in Africa. We incorporate current best estimates of the prevalence of pfhrp2/3 deletions and conduct a literature review to estimate model parameters known to impact the selection of pfhrp2/3 deletions for each malaria endemic country. We identify 20 countries worldwide to prioritise for surveillance and future deployment of alternative RDT, based on quickly selecting for pfhrp2/3 deletions once established. In scenarios designed to explore the continued spread of deletions in Africa, we identify 10 high threat countries that are most at risk of deletions both spreading to and subsequently being rapidly selected for. If HRP2-based RDTs continue to be relied on for malaria case management, we predict that the major route for pfhrp2 deletions to spread is south out from the current hotspot in the Horn of Africa, moving through East Africa over the next 20 years. We explore the variation in modelled timelines through an extensive parameter sensitivity analysis and despite wide uncertainties, we identify three countries that have not yet switched RDTs (Senegal, Zambia and Kenya) that are robustly identified as high risk for pfhrp2/3 deletions. These results provide a refined and updated prediction model for the emergence of pfhrp2/3 deletions in an effort to help guide pfhrp2/3 policy and prioritise future surveillance efforts and innovation.

4.
PLoS Med ; 20(11): e1004195, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38016000

RESUMO

BACKGROUND: Vaccines have reduced severe disease and death from Coronavirus Disease 2019 (COVID-19). However, with evidence of waning efficacy coupled with continued evolution of the virus, health programmes need to evaluate the requirement for regular booster doses, considering their impact and cost-effectiveness in the face of ongoing transmission and substantial infection-induced immunity. METHODS AND FINDINGS: We developed a combined immunological-transmission model parameterised with data on transmissibility, severity, and vaccine effectiveness. We simulated Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmission and vaccine rollout in characteristic global settings with different population age-structures, contact patterns, health system capacities, prior transmission, and vaccine uptake. We quantified the impact of future vaccine booster dose strategies with both ancestral and variant-adapted vaccine products, while considering the potential future emergence of new variants with modified transmission, immune escape, and severity properties. We found that regular boosting of the oldest age group (75+) is an efficient strategy, although large numbers of hospitalisations and deaths could be averted by extending vaccination to younger age groups. In countries with low vaccine coverage and high infection-derived immunity, boosting older at-risk groups was more effective than continuing primary vaccination into younger ages in our model. Our study is limited by uncertainty in key parameters, including the long-term durability of vaccine and infection-induced immunity as well as uncertainty in the future evolution of the virus. CONCLUSIONS: Our modelling suggests that regular boosting of the high-risk population remains an important tool to reduce morbidity and mortality from current and future SARS-CoV-2 variants. Our results suggest that focusing vaccination in the highest-risk cohorts will be the most efficient (and hence cost-effective) strategy to reduce morbidity and mortality.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação
5.
Nat Commun ; 14(1): 4325, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468463

RESUMO

With the ongoing evolution of the SARS-CoV-2 virus updated vaccines may be needed. We fitted a model linking immunity levels and protection to vaccine effectiveness data from England for three vaccines (Oxford/AstraZeneca AZD1222, Pfizer-BioNTech BNT162b2, Moderna mRNA-1273) and two variants (Delta, Omicron). Our model reproduces the observed sustained protection against hospitalisation and death from the Omicron variant over the first six months following dose 3 with the ancestral vaccines but projects a gradual waning to moderate protection after 1 year. Switching the fourth dose to a variant-matched vaccine against Omicron BA.1/2 is projected to prevent nearly twice as many hospitalisations and deaths over a 1-year period compared to administering the ancestral vaccine. This result is sensitive to the degree to which immunogenicity data can be used to predict vaccine effectiveness and uncertainty regarding the impact that infection-induced immunity (not captured here) may play in modifying future vaccine effectiveness.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Vacina BNT162 , COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , Eficácia de Vacinas , Vacinas contra COVID-19
6.
Sci Adv ; 9(23): eadg7676, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294754

RESUMO

Not all COVID-19 deaths are officially reported, and particularly in low-income and humanitarian settings, the magnitude of reporting gaps remains sparsely characterized. Alternative data sources, including burial site worker reports, satellite imagery of cemeteries, and social media-conducted surveys of infection may offer solutions. By merging these data with independently conducted, representative serological studies within a mathematical modeling framework, we aim to better understand the range of underreporting using examples from three major cities: Addis Ababa (Ethiopia), Aden (Yemen), and Khartoum (Sudan) during 2020. We estimate that 69 to 100%, 0.8 to 8.0%, and 3.0 to 6.0% of COVID-19 deaths were reported in each setting, respectively. In future epidemics, and in settings where vital registration systems are limited, using multiple alternative data sources could provide critically needed, improved estimates of epidemic impact. However, ultimately, these systems are needed to ensure that, in contrast to COVID-19, the impact of future pandemics or other drivers of mortality is reported and understood worldwide.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Etiópia/epidemiologia , Inquéritos e Questionários , Pandemias
7.
PLoS Comput Biol ; 19(6): e1010247, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37294835

RESUMO

In malaria, individuals are often infected with different parasite strains. The complexity of infection (COI) is defined as the number of genetically distinct parasite strains in an individual. Changes in the mean COI in a population have been shown to be informative of changes in transmission intensity with a number of probabilistic likelihood and Bayesian models now developed to estimate the COI. However, rapid, direct measures based on heterozygosity or FwS do not properly represent the COI. In this work, we present two new methods that use easily calculated measures to directly estimate the COI from allele frequency data. Using a simulation framework, we show that our methods are computationally efficient and comparably accurate to current approaches in the literature. Through a sensitivity analysis, we characterize how the distribution of parasite densities, the assumed sequencing depth, and the number of sampled loci impact the bias and accuracy of our two methods. Using our developed methods, we further estimate the COI globally from Plasmodium falciparum sequencing data and compare the results against the literature. We show significant differences in the estimated COI globally between continents and a weak relationship between malaria prevalence and COI.


Assuntos
Malária Falciparum , Malária , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Malária Falciparum/parasitologia , Teorema de Bayes , Plasmodium falciparum/genética , Frequência do Gene/genética , Malária/parasitologia
8.
Nat Commun ; 14(1): 3840, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37380650

RESUMO

Reported COVID-19 cases and associated mortality remain low in many sub-Saharan countries relative to global averages, but true impact is difficult to estimate given limitations around surveillance and mortality registration. In Lusaka, Zambia, burial registration and SARS-CoV-2 prevalence data during 2020 allow estimation of excess mortality and transmission. Relative to pre-pandemic patterns, we estimate age-dependent mortality increases, totalling 3212 excess deaths (95% CrI: 2104-4591), representing an 18.5% (95% CrI: 13.0-25.2%) increase relative to pre-pandemic levels. Using a dynamical model-based inferential framework, we find that these mortality patterns and SARS-CoV-2 prevalence data are in agreement with established COVID-19 severity estimates. Our results support hypotheses that COVID-19 impact in Lusaka during 2020 was consistent with COVID-19 epidemics elsewhere, without requiring exceptional explanations for low reported figures. For more equitable decision-making during future pandemics, barriers to ascertaining attributable mortality in low-income settings must be addressed and factored into discourse around reported impact differences.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Zâmbia/epidemiologia , Sepultamento , Pandemias
9.
Lancet Infect Dis ; 23(9): e383-e388, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37150186

RESUMO

Novel data and analyses have had an important role in informing the public health response to the COVID-19 pandemic. Existing surveillance systems were scaled up, and in some instances new systems were developed to meet the challenges posed by the magnitude of the pandemic. We describe the routine and novel data that were used to address urgent public health questions during the pandemic, underscore the challenges in sustainability and equity in data generation, and highlight key lessons learnt for designing scalable data collection systems to support decision making during a public health crisis. As countries emerge from the acute phase of the pandemic, COVID-19 surveillance systems are being scaled down. However, SARS-CoV-2 resurgence remains a threat to global health security; therefore, a minimal cost-effective system needs to remain active that can be rapidly scaled up if necessary. We propose that a retrospective evaluation to identify the cost-benefit profile of the various data streams collected during the pandemic should be on the scientific research agenda.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias/prevenção & controle , Estudos Retrospectivos , Coleta de Dados
10.
Int J Infect Dis ; 132: 17-25, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37061211

RESUMO

OBJECTIVES: This study examined the treatment response of mixed vs single-species Plasmodium falciparum infections to artemisinin-based combination therapies (ACTs). METHODS: A total of 1211 blood samples collected on days 0, 7, 14, 21, 28, 35, and 42 from 173 individuals enrolled in two randomized ACT efficacy studies were tested for malaria using 18s ribosomal RNA-based real-time polymerase chain reaction. All recurrent parasitemia were characterized for Plasmodium species composition and time to reinfection during 42-day follow-up compared across ACTs. RESULTS: Day 0 samples had 71.1% (116/163) single P. falciparum infections and 28.2% (46/163) coinfections. A total of 54.0% (88/163) of individuals tested positive for Plasmodium at least once between days 7-42. A total of 19.3% (17/88) of individuals with recurrent infections were infected with a different Plasmodium species than observed at day 0, with 76.5% (13/17) of these "hidden" infections appearing after clearing P. falciparum present at day 0. Artesunate-mefloquine (16.4 hours) and dihydroartemisinin-piperaquine (17.6 hours) had increased clearance rates over artemether-lumefantrine (21.0 hours). Dihydroartemisinin-piperaquine exhibited the longest duration of reinfection prophylaxis. Cure rates were comparable across each species composition. CONCLUSION: No differences in clearance rates were found depending on whether the infection contained species other than P. falciparum. Significantly longer durations of protection were observed for individuals treated with dihydroartemisinin-piperaquine.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Quinolinas , Humanos , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Combinação de Medicamentos , Quênia , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium falciparum , Quinolinas/uso terapêutico , Reinfecção , Estudos Retrospectivos
11.
Clin Infect Dis ; 76(4): 704-712, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35767269

RESUMO

BACKGROUND: Assessing the infectious reservoir is critical in malaria control and elimination strategies. We conducted a longitudinal epidemiological study in a high-malaria-burden region in Kenya to characterize transmission in an asymptomatic population. METHODS: 488 study participants encompassing all ages in 120 households within 30 clusters were followed for 1 year with monthly sampling. Malaria was diagnosed by microscopy and molecular methods. Transmission potential in gametocytemic participants was assessed using direct skin and/or membrane mosquito feeding assays, then treated with artemether-lumefantrine. Study variables were assessed using mixed-effects generalized linear models. RESULTS: Asexual and sexual parasite data were collected from 3792 participant visits, with 903 linked with feeding assays. Univariate analysis revealed that the 6-11-year-old age group was at higher risk of harboring asexual and sexual infections than those <6 years old (odds ratio [OR] 1.68, P < .001; and OR 1.81, P < .001), respectively. Participants with submicroscopic parasitemia were at a lower risk of gametocytemia compared with microscopic parasitemia (OR 0.04, P < .001), but they transmitted at a significantly higher rate (OR 2.00, P = .002). A large proportion of the study population who were infected at least once remained infected (despite treatment) with asexual (71.7%, 291/406) or sexual (37.4%, 152/406) parasites. 88.6% (365/412) of feeding assays conducted in individuals who failed treatment the previous month resulted in transmissions. CONCLUSIONS: Individuals with asymptomatic infection sustain the transmission cycle, with the 6-11-year age group serving as an important reservoir. The high rates of artemether-lumefantrine treatment failures suggest surveillance programs using molecular methods need to be expanded for accurate monitoring and evaluation of treatment outcomes.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Animais , Humanos , Criança , Antimaláricos/uso terapêutico , Malária Falciparum/epidemiologia , Artemisininas/uso terapêutico , Artemeter/uso terapêutico , Plasmodium falciparum , Quênia/epidemiologia , Parasitemia/tratamento farmacológico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária/tratamento farmacológico
13.
Lancet Microbe ; 3(9): e701-e710, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931099

RESUMO

BACKGROUND: Artemisinin-resistant genotypes of Plasmodium falciparum have now emerged a minimum of six times on three continents despite recommendations that all artemisinins be deployed as artemisinin combination therapies (ACTs). Widespread resistance to the non-artemisinin partner drugs in ACTs has the potential to limit the clinical and resistance benefits provided by combination therapy. We aimed to model and evaluate the long-term effects of high levels of partner-drug resistance on the early emergence of artemisinin-resistant genotypes. METHODS: Using a consensus modelling approach, we used three individual-based mathematical models of Plasmodium falciparum transmission to evaluate the effects of pre-existing partner-drug resistance and ACT deployment on the evolution of artemisinin resistance. Each model simulates 100 000 individuals in a particular transmission setting (malaria prevalence of 1%, 5%, 10%, or 20%) with a daily time step that updates individuals' infection status, treatment status, immunity, genotype-specific parasite densities, and clinical state. We modelled varying access to antimalarial drugs if febrile (coverage of 20%, 40%, or 60%) with one primary ACT used as first-line therapy: dihydroartemisinin-piperaquine (DHA-PPQ), artesunate-amodiaquine (ASAQ), or artemether-lumefantrine (AL). The primary outcome was time until 0·25 580Y allele frequency for artemisinin resistance (the establishment time). FINDINGS: Higher frequencies of pre-existing partner-drug resistant genotypes lead to earlier establishment of artemisinin resistance. Across all models, a 10-fold increase in the frequency of partner-drug resistance genotypes on average corresponded to loss of artemisinin efficacy 2-12 years earlier. Most reductions in time to artemisinin resistance establishment were observed after an increase in frequency of the partner-drug resistance genotype from 0·0 to 0·10. INTERPRETATION: Partner-drug resistance in ACTs facilitates the early emergence of artemisinin resistance and is a major public health concern. Higher-grade partner-drug resistance has the largest effect, with piperaquine resistance accelerating the early emergence of artemisinin-resistant alleles the most. Continued investment in molecular surveillance of partner-drug resistant genotypes to guide choice of first-line ACT is paramount. FUNDING: Schmidt Science Fellowship in partnership with the Rhodes Trust; Bill & Melinda Gates Foundation; Wellcome Trust.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Artemeter/farmacologia , Combinação Arteméter e Lumefantrina/farmacologia , Consenso , Resistência a Medicamentos/genética , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética
14.
Lancet Infect Dis ; 22(9): 1293-1302, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753318

RESUMO

BACKGROUND: The first COVID-19 vaccine outside a clinical trial setting was administered on Dec 8, 2020. To ensure global vaccine equity, vaccine targets were set by the COVID-19 Vaccines Global Access (COVAX) Facility and WHO. However, due to vaccine shortfalls, these targets were not achieved by the end of 2021. We aimed to quantify the global impact of the first year of COVID-19 vaccination programmes. METHODS: A mathematical model of COVID-19 transmission and vaccination was separately fit to reported COVID-19 mortality and all-cause excess mortality in 185 countries and territories. The impact of COVID-19 vaccination programmes was determined by estimating the additional lives lost if no vaccines had been distributed. We also estimated the additional deaths that would have been averted had the vaccination coverage targets of 20% set by COVAX and 40% set by WHO been achieved by the end of 2021. FINDINGS: Based on official reported COVID-19 deaths, we estimated that vaccinations prevented 14·4 million (95% credible interval [Crl] 13·7-15·9) deaths from COVID-19 in 185 countries and territories between Dec 8, 2020, and Dec 8, 2021. This estimate rose to 19·8 million (95% Crl 19·1-20·4) deaths from COVID-19 averted when we used excess deaths as an estimate of the true extent of the pandemic, representing a global reduction of 63% in total deaths (19·8 million of 31·4 million) during the first year of COVID-19 vaccination. In COVAX Advance Market Commitment countries, we estimated that 41% of excess mortality (7·4 million [95% Crl 6·8-7·7] of 17·9 million deaths) was averted. In low-income countries, we estimated that an additional 45% (95% CrI 42-49) of deaths could have been averted had the 20% vaccination coverage target set by COVAX been met by each country, and that an additional 111% (105-118) of deaths could have been averted had the 40% target set by WHO been met by each country by the end of 2021. INTERPRETATION: COVID-19 vaccination has substantially altered the course of the pandemic, saving tens of millions of lives globally. However, inadequate access to vaccines in low-income countries has limited the impact in these settings, reinforcing the need for global vaccine equity and coverage. FUNDING: Schmidt Science Fellowship in partnership with the Rhodes Trust; WHO; UK Medical Research Council; Gavi, the Vaccine Alliance; Bill & Melinda Gates Foundation; National Institute for Health Research; and Community Jameel.


Assuntos
COVID-19 , Vacinas , Vacinas contra COVID-19 , Saúde Global , Humanos , Modelos Teóricos , Vacinação
15.
Commun Med (Lond) ; 2: 54, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603270

RESUMO

Background: The infection fatality ratio (IFR) is a key statistic for estimating the burden of coronavirus disease 2019 (COVID-19) and has been continuously debated throughout the COVID-19 pandemic. The age-specific IFR can be quantified using antibody surveys to estimate total infections, but requires consideration of delay-distributions from time from infection to seroconversion, time to death, and time to seroreversion (i.e. antibody waning) alongside serologic test sensitivity and specificity. Previous IFR estimates have not fully propagated uncertainty or accounted for these potential biases, particularly seroreversion. Methods: We built a Bayesian statistical model that incorporates these factors and applied this model to simulated data and 10 serologic studies from different countries. Results: We demonstrate that seroreversion becomes a crucial factor as time accrues but is less important during first-wave, short-term dynamics. We additionally show that disaggregating surveys by regions with higher versus lower disease burden can inform serologic test specificity estimates. The overall IFR in each setting was estimated at 0.49-2.53%. Conclusion: We developed a robust statistical framework to account for full uncertainties in the parameters determining IFR. We provide code for others to apply these methods to further datasets and future epidemics.

16.
Commun Med (Lond) ; 2: 14, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603311

RESUMO

Background: Vaccine hesitancy - a delay in acceptance or refusal of vaccines despite availability - has the potential to threaten the successful roll-out of SARS-CoV-2 vaccines globally. In this study, we aim to understand the likely impact of vaccine hesitancy on the control of the COVID-19 pandemic. Methods: We modelled the potential impact of vaccine hesitancy on the control of the pandemic and the relaxation of non-pharmaceutical interventions (NPIs) by combining an epidemiological model of SARS-CoV-2 transmission with data on vaccine hesitancy from population surveys. Results: Our simulations suggest that the mortality over a 2-year period could be up to 7.6 times higher in countries with high vaccine hesitancy compared to an ideal vaccination uptake if NPIs are relaxed. Alternatively, high vaccine hesitancy could prolong the need for NPIs to remain in place. Conclusions: While vaccination is an individual choice, vaccine-hesitant individuals have a substantial impact on the pandemic trajectory, which may challenge current efforts to control COVID-19. In order to prevent such outcomes, addressing vaccine hesitancy with behavioural interventions is an important priority in the control of the COVID-19 pandemic.

17.
Nat Commun ; 13(1): 3015, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641529

RESUMO

The transmission dynamics and burden of SARS-CoV-2 in many regions of the world is still largely unknown due to the scarcity of epidemiological analyses and lack of testing to assess the prevalence of disease. In this work, we develop a quantitative framework based on excess mortality data to reconstruct SARS-CoV-2 transmission dynamics and assess the level of underreporting in infections and deaths. Using weekly all-cause mortality data from Iran, we are able to show a strong agreement between our attack rate estimates and seroprevalence measurements in each province and find significant heterogeneity in the level of exposure across the country with 11 provinces reaching near 100% attack rates. Despite having a young population, our analysis reveals that incorporating limited access to medical services in our model, coupled with undercounting of COVID-19-related deaths, leads to estimates of infection fatality rate in most provinces of Iran that are comparable to high-income countries.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Irã (Geográfico)/epidemiologia , Estudos Soroepidemiológicos
18.
Emerg Infect Dis ; 28(4): 759-766, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35213800

RESUMO

India reported >10 million coronavirus disease (COVID-19) cases and 149,000 deaths in 2020. To reassess reported deaths and estimate incidence rates during the first 6 months of the epidemic, we used a severe acute respiratory syndrome coronavirus 2 transmission model fit to data from 3 serosurveys in Delhi and time-series documentation of reported deaths. We estimated 48.7% (95% credible interval 22.1%-76.8%) cumulative infection in the population through the end of September 2020. Using an age-adjusted overall infection fatality ratio based on age-specific estimates from mostly high-income countries, we estimated that just 15.0% (95% credible interval 9.3%-34.0%) of COVID-19 deaths had been reported, indicating either substantial underreporting or lower age-specific infection-fatality ratios in India than in high-income countries. Despite the estimated high attack rate, additional epidemic waves occurred in late 2020 and April-May 2021. Future dynamics will depend on the duration of natural and vaccine-induced immunity and their effectiveness against new variants.


Assuntos
COVID-19 , Epidemias , Humanos , Incidência , Índia/epidemiologia , SARS-CoV-2
19.
Clin Infect Dis ; 75(1): e224-e233, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34549260

RESUMO

BACKGROUND: The public health impact of the coronavirus disease 2019 (COVID-19) pandemic has motivated a rapid search for potential therapeutics, with some key successes. However, the potential impact of different treatments, and consequently research and procurement priorities, have not been clear. METHODS: Using a mathematical model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, COVID-19 disease and clinical care, we explore the public-health impact of different potential therapeutics, under a range of scenarios varying healthcare capacity, epidemic trajectories; and drug efficacy in the absence of supportive care. RESULTS: The impact of drugs like dexamethasone (delivered to the most critically-ill in hospital and whose therapeutic benefit is expected to depend on the availability of supportive care such as oxygen and mechanical ventilation) is likely to be limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in hospitals being overwhelmed. As such, it may avert 22% of deaths in high-income countries but only 8% in low-income countries (assuming R = 1.35). Therapeutics for different patient populations (those not in hospital, early in the course of infection) and types of benefit (reducing disease severity or infectiousness, preventing hospitalization) could have much greater benefits, particularly in resource-poor settings facing large epidemics. CONCLUSIONS: Advances in the treatment of COVID-19 to date have been focused on hospitalized-patients and predicated on an assumption of adequate access to supportive care. Therapeutics delivered earlier in the course of infection that reduce the need for healthcare or reduce infectiousness could have significant impact, and research into their efficacy and means of delivery should be a priority.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Efeitos Psicossociais da Doença , Humanos , Pandemias/prevenção & controle , Preparações Farmacêuticas
20.
Int J Infect Dis ; 114: 210-218, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34749011

RESUMO

Objectives The first COVID-19 pandemic waves in many low-income countries appeared milder than initially forecasted. We conducted a country-level ecological study to describe patterns in key SARS-CoV-2 outcomes by country and region and explore associations with potential explanatory factors, including population age structure and prior exposure to endemic parasitic infections. Methods We collected publicly available data and compared them using standardisation techniques. We then explored the association between exposures and outcomes using random forest and linear regression. We adjusted for potential confounders and plausible effect modifications. Results While mean time-varying reproduction number was highest in the European and Americas regions, median age of death was lower in the Africa region, with a broadly similar case-fatality ratio. Population age was strongly associated with mean (ß=0.01, 95% CI, 0.005, 0.011) and median age of cases (ß=-0.40, 95% CI, -0.53, -0.26) and deaths (ß= 0.40, 95% CI, 0.17, 0.62). Conclusions Population age seems an important country-level factor explaining both transmissibility and age distribution of observed cases and deaths. Endemic infections seem unlikely, from this analysis, to be key drivers of the variation in observed epidemic trends. Our study was limited by the availability of outcome data and its causally uncertain ecological design.


Assuntos
COVID-19 , SARS-CoV-2 , Distribuição por Idade , América , Humanos , Pandemias , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...