Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Syst Neurosci ; 17: 1229627, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075533

RESUMO

Cerebellar networks have traditionally been linked to sensorimotor control. However, a large body of evidence suggests that cerebellar functions extend to non-motor realms, such as fear-based emotional processing and that these functions are supported by interactions with a wide range of brain structures. Research related to the cerebellar contributions to emotional processing has focussed primarily on the use of well-constrained conditioning paradigms in both human and non-human subjects. From these studies, cerebellar circuits appear to be critically involved in both conditioned and unconditioned responses to threatening stimuli in addition to encoding and storage of fear memory. It has been hypothesised that the computational mechanism underlying this contribution may involve internal models, where errors between actual and expected outcomes are computed within the circuitry of the cerebellum. From a clinical perspective, cerebellar abnormalities have been consistently linked to neurodevelopmental disorders, including autism. Importantly, atypical adaptive behaviour and heightened anxiety are also common amongst autistic individuals. In this review, we provide an overview of the current anatomical, physiological and theoretical understanding of cerebellar contributions to fear-based emotional processing to foster further insights into the neural circuitry underlying emotional dysregulation observed in people with autism.

2.
Mol Autism ; 13(1): 34, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850732

RESUMO

BACKGROUND: Mutations in the postsynaptic transmembrane protein neuroligin-3 are highly correlative with autism spectrum disorders (ASDs) and intellectual disabilities (IDs). Fear learning is well studied in models of these disorders, however differences in fear response behaviours are often overlooked. We aim to examine fear behaviour and its cellular underpinnings in a rat model of ASD/ID lacking Nlgn3. METHODS: This study uses a range of behavioural tests to understand differences in fear response behaviour in Nlgn3-/y rats. Following this, we examined the physiological underpinnings of this in neurons of the periaqueductal grey (PAG), a midbrain area involved in flight-or-freeze responses. We used whole-cell patch-clamp recordings from ex vivo PAG slices, in addition to in vivo local-field potential recordings and electrical stimulation of the PAG in wildtype and Nlgn3-/y rats. We analysed behavioural data with two- and three-way ANOVAS and electrophysiological data with generalised linear mixed modelling (GLMM). RESULTS: We observed that, unlike the wildtype, Nlgn3-/y rats are more likely to response with flight rather than freezing in threatening situations. Electrophysiological findings were in agreement with these behavioural outcomes. We found in ex vivo slices from Nlgn3-/y rats that neurons in dorsal PAG (dPAG) showed intrinsic hyperexcitability compared to wildtype. Similarly, stimulating dPAG in vivo revealed that lower magnitudes sufficed to evoke flight behaviour in Nlgn3-/y than wildtype rats, indicating the functional impact of the increased cellular excitability. LIMITATIONS: Our findings do not examine what specific cell type in the PAG is likely responsible for these phenotypes. Furthermore, we have focussed on phenotypes in young adult animals, whilst the human condition associated with NLGN3 mutations appears during the first few years of life. CONCLUSIONS: We describe altered fear responses in Nlgn3-/y rats and provide evidence that this is the result of a circuit bias that predisposes flight over freeze responses. Additionally, we demonstrate the first link between PAG dysfunction and ASD/ID. This study provides new insight into potential pathophysiologies leading to anxiety disorders and changes to fear responses in individuals with ASD.


Assuntos
Transtorno Autístico , Animais , Transtorno Autístico/metabolismo , Medo/fisiologia , Congelamento , Humanos , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Ratos
3.
J Neurosci ; 42(11): 2268-2281, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35091502

RESUMO

During sleep, the widespread coordination of neuronal oscillations across both cortical and subcortical brain regions is thought to support various physiological functions. However, how sleep-related activity within the brain's largest sensorimotor structure, the cerebellum, is multiplexed with well-described sleep-related mechanisms in regions such as the hippocampus remains unknown. We therefore simultaneously recorded from the dorsal hippocampus and three distinct regions of the cerebellum (Crus I, lobule VI, and lobules II/III) in male mice during natural sleep. Local field potential (LFP) oscillations were found to be coordinated between these structures in a sleep stage-specific manner. During non-REM sleep, prominent δ frequency coherence was observed between lobule VI and hippocampus, whereas non-REM-associated hippocampal sharp-wave ripple activity evoked discrete LFP modulation in all recorded cerebellar regions, with the shortest latency effects in lobule VI. We also describe discrete phasic sharp potentials (PSPs), which synchronize across cerebellar regions and trigger sharp-wave ripple suppression. During REM, cerebellar δ phase significantly modulated hippocampal theta frequency, and this effect was greatest when PSPs were abundant. PSPs were phase-locked to cerebellar δ oscillation peak and hippocampal theta oscillation trough, respectively. Within all three cerebellar regions, prominent LFP oscillations were observed at both low (δ, <4 Hz) and very high frequencies (∼250 Hz) during non-REM and REM sleep. Intracerebellar cross-frequency analysis revealed that δ oscillations modulate those in the very high-frequency range. Together, these results reveal multiple candidate physiological mechanisms to support "offline," bidirectional interaction within distributed cerebello-hippocampal networks.SIGNIFICANCE STATEMENT Sleep is associated with widespread coordination of activity across a range of brain regions. However, little is known about how activity within the largest sensorimotor region of the brain, the cerebellum, is both intrinsically organized and links with higher-order structures, such as the hippocampus, during sleep. By making multisite local field potential recordings in naturally sleeping mice, we reveal and characterize multiple sleep stage-specific physiological mechanisms linking three distinct cerebellar regions with the hippocampus. Central to these physiological mechanisms is a prominent δ (<4 Hz) oscillation, which temporally coordinates both intracerebellar and cerebello-hippocampal network dynamics. Understanding this distributed network activity is important for gaining insight into cerebellar contributions to sleep-dependent processes, such as memory consolidation.


Assuntos
Hipocampo , Consolidação da Memória , Animais , Córtex Cerebelar , Hipocampo/fisiologia , Masculino , Camundongos , Sono/fisiologia , Sono REM
4.
Brain ; 144(5): 1576-1589, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33769452

RESUMO

Seizures can emerge from multiple or large foci in temporal lobe epilepsy, complicating focally targeted strategies such as surgical resection or the modulation of the activity of specific hippocampal neuronal populations through genetic or optogenetic techniques. Here, we evaluate a strategy in which optogenetic activation of medial septal GABAergic neurons, which provide extensive projections throughout the hippocampus, is used to control seizures. We utilized the chronic intrahippocampal kainate mouse model of temporal lobe epilepsy, which results in spontaneous seizures and as is often the case in human patients, presents with hippocampal sclerosis. Medial septal GABAergic neuron populations were immunohistochemically labelled and were not reduced in epileptic conditions. Genetic labelling with mRuby of medial septal GABAergic neuron synaptic puncta and imaging across the rostral to caudal extent of the hippocampus, also indicated an unchanged number of putative synapses in epilepsy. Furthermore, optogenetic stimulation of medial septal GABAergic neurons consistently modulated oscillations across multiple hippocampal locations in control and epileptic conditions. Finally, wireless optogenetic stimulation of medial septal GABAergic neurons, upon electrographic detection of spontaneous hippocampal seizures, resulted in reduced seizure durations. We propose medial septal GABAergic neurons as a novel target for optogenetic control of seizures in temporal lobe epilepsy.


Assuntos
Neurônios GABAérgicos/fisiologia , Hipocampo/fisiopatologia , Optogenética , Convulsões/fisiopatologia , Núcleos Septais/fisiopatologia , Animais , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Masculino , Camundongos
5.
J Neurosci ; 36(50): 12707-12719, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27974618

RESUMO

The dorsal and ventral periaqueductal gray (dPAG and vPAG, respectively) are embedded in distinct survival networks that coordinate, respectively, innate and conditioned fear-evoked freezing. However, the information encoded by the PAG during these survival behaviors is poorly understood. Recordings in the dPAG and vPAG in rats revealed differences in neuronal activity associated with the two behaviors. During innate fear, neuronal responses were significantly greater in the dPAG compared with the vPAG. After associative fear conditioning and during early extinction (EE), when freezing was maximal, a field potential was evoked in the PAG by the auditory fear conditioned stimulus (CS). With repeated presentations of the unreinforced CS, animals displayed progressively less freezing accompanied by a reduction in event-related field potential amplitude. During EE, the majority of dPAG and vPAG units increased their firing frequency, but spike-triggered averaging showed that only ventral activity during the presentation of the CS was significantly coupled to EMG-related freezing behavior. This PAG-EMG coupling was only present for the onset of freezing activity during the CS in EE. During late extinction, a subpopulation of units in the dPAG and vPAG continued to show CS-evoked responses; that is, they were extinction resistant. Overall, these findings support roles for the dPAG in innate and conditioned fear and for the vPAG in initiating but not maintaining the drive to muscles to generate conditioned freezing. The existence of extinction-susceptible and extinction-resistant cells also suggests that the PAG plays a role in encoding fear memories. SIGNIFICANCE STATEMENT: The periaqueductal gray (PAG) orchestrates survival behaviors, with the dorsal (dPAG) and ventral (vPAG) PAG concerned respectively with innate and learnt fear responses. We recorded neural activity from dPAG and vPAG in rats during the expression of innate fear and extinction of learned freezing. Cells in dPAG responded more robustly during innate fear, but dPAG and vPAG both encoded the time of the conditioned stimulus during early extinction and displayed extinction sensitive and resistant characteristics. Only vPAG discharge was correlated with muscle activity, but this was limited to the onset of conditioned freezing. The data suggest that the roles of dPAG and vPAG in fear behavior are more complex than previously thought, including a potential role in fear memory.


Assuntos
Medo/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Estimulação Acústica , Animais , Condicionamento Psicológico/fisiologia , Eletromiografia , Potenciais Evocados/fisiologia , Extinção Psicológica/fisiologia , Masculino , Ratos , Ratos Wistar
6.
J Neurosci ; 36(30): 7841-51, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27466330

RESUMO

UNLABELLED: Pathways arising from the periphery that target the inferior olive [spino-olivocerebellar pathways (SOCPs)] are a vital source of information to the cerebellum and are modulated (gated) during active movements. This limits their ability to forward signals to climbing fibers in the cerebellar cortex. We tested the hypothesis that the temporal pattern of gating is related to the predictability of a sensory signal. Low-intensity electrical stimulation of the ipsilateral hindlimb in awake rats evoked field potentials in the C1 zone in the copula pyramidis of the cerebellar cortex. Responses had an onset latency of 12.5 ± 0.3 ms and were either short or long duration (8.7 ± 0.1 vs 31.2 ± 0.3 ms, respectively). Both types of response were shown to be mainly climbing fiber in origin and therefore evoked by transmission in hindlimb SOCPs. Changes in response size (area of field, millivolts per millisecond) were used to monitor differences in transmission during rest and three phases of rearing: phase 1, rearing up; phase 2, upright; and phase 3, rearing down. Responses evoked during phase 2 were similar in size to rest but were smaller during phases 1 and 3, i.e., transmission was reduced during active movement when self-generated (predictable) sensory signals from the hindlimbs are likely to occur. To test whether the pattern of gating was related to the predictability of the sensory signal, some animals received the hindlimb stimulation only during phase 2. Over ∼10 d, the responses became progressively smaller in size, consistent with gating-out transmission of predictable sensory signals relayed via SOCPs. SIGNIFICANCE STATEMENT: A major route for peripheral information to gain access to the cerebellum is via ascending climbing fiber pathways. During active movements, gating of transmission in these pathways controls when climbing fiber signals can modify cerebellar activity. We investigated this phenomenon in rats during their exploratory behavior of rearing. During rearing up and down, transmission was reduced at a time when self-generated, behaviorally irrelevant (predictable) signals occur. However, during the upright phase of rearing, transmission was increased when behaviorally relevant (unpredictable) signals may occur. When the peripheral stimulation was delivered only during the upright phase, so its occurrence became predictable over time, transmission was reduced. Therefore, the results indicate that the gating is related to the level of predictability of a sensory signal.


Assuntos
Vias Aferentes/fisiologia , Cerebelo/fisiologia , Comportamento Exploratório/fisiologia , Vias Neurais/fisiologia , Núcleo Olivar/fisiologia , Sensação/fisiologia , Animais , Retroalimentação Fisiológica/fisiologia , Masculino , Inibição Neural/fisiologia , Neurônios Aferentes/fisiologia , Ratos , Ratos Wistar
7.
J Neurosci ; 35(42): 14132-47, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26490855

RESUMO

The periaqueductal gray (PAG) coordinates behaviors essential to survival, including striking changes in movement and posture (e.g., escape behaviors in response to noxious stimuli vs freezing in response to fear-evoking stimuli). However, the neural circuits underlying the expression of these behaviors remain poorly understood. We demonstrate in vivo in rats that activation of the ventrolateral PAG (vlPAG) affects motor systems at multiple levels of the neuraxis through the following: (1) differential control of spinal neurons that forward sensory information to the cerebellum via spino-olivo-cerebellar pathways (nociceptive signals are reduced while proprioceptive signals are enhanced); (2) alterations in cerebellar nuclear output as revealed by changes in expression of Fos-like immunoreactivity; and (3) regulation of spinal reflex circuits, as shown by an increase in α-motoneuron excitability. The capacity to coordinate sensory and motor functions is demonstrated in awake, behaving rats, in which natural activation of the vlPAG in fear-conditioned animals reduced transmission in spino-olivo-cerebellar pathways during periods of freezing that were associated with increased muscle tone and thus motor outflow. The increase in spinal motor reflex excitability and reduction in transmission of ascending sensory signals via spino-olivo-cerebellar pathways occurred simultaneously. We suggest that the interactions revealed in the present study between the vlPAG and sensorimotor circuits could form the neural substrate for survival behaviors associated with vlPAG activation. SIGNIFICANCE STATEMENT: Neural circuits that coordinate survival behaviors remain poorly understood. We demonstrate in rats that the periaqueductal gray (PAG) affects motor systems at the following multiple levels of the neuraxis: (1) through altering transmission in spino-olivary pathways that forward sensory signals to the cerebellum, reducing and enhancing transmission of nociceptive and proprioceptive information, respectively; (2) by alterations in cerebellar output; and (3) through enhancement of spinal motor reflex pathways. The sensory and motor effects occurred at the same time and were present in both anesthetized animals and behavioral experiments in which fear conditioning naturally activated the PAG. The results provide insights into the neural circuits that enable an animal to be ready and able to react to danger, thus assisting in survival.


Assuntos
Vias Aferentes/fisiologia , Vias Eferentes/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Animais , Cerebelo/fisiologia , Condicionamento Psicológico , Estimulação Elétrica , Potenciais Evocados/fisiologia , Potencial Evocado Motor/fisiologia , Medo , Reflexo H , Membro Posterior/fisiologia , Masculino , Proteínas Oncogênicas v-fos/metabolismo , Técnicas de Patch-Clamp , Substância Cinzenta Periaquedutal/citologia , Estimulação Física , Células do Corno Posterior/fisiologia , Ratos , Ratos Wistar , Vigília
9.
Brain ; 138(Pt 4): 862-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25724202

RESUMO

Creating valid mouse models of slowly progressing human neurological diseases is challenging, not least because the short lifespan of rodents confounds realistic modelling of disease time course. With their large brains and long lives, sheep offer significant advantages for translational studies of human disease. Here we used normal and CLN5 Batten disease affected sheep to demonstrate the use of the species for studying neurological function in a model of human disease. We show that electroencephalography can be used in sheep, and that longitudinal recordings spanning many months are possible. This is the first time such an electroencephalography study has been performed in sheep. We characterized sleep in sheep, quantifying characteristic vigilance states and neurophysiological hallmarks such as sleep spindles. Mild sleep abnormalities and abnormal epileptiform waveforms were found in the electroencephalographies of Batten disease affected sheep. These abnormalities resemble the epileptiform activity seen in children with Batten disease and demonstrate the translational relevance of both the technique and the model. Given that both spontaneous and engineered sheep models of human neurodegenerative diseases already exist, sheep constitute a powerful species in which longitudinal in vivo studies can be conducted. This will advance our understanding of normal brain function and improve our capacity for translational research into neurological disorders.


Assuntos
Modelos Animais de Doenças , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Sono/fisiologia , Pesquisa Translacional Biomédica/métodos , Animais , Humanos , Proteínas de Membrana Lisossomal , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/fisiopatologia , Ovinos
10.
J Physiol ; 592(10): 2197-213, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24639484

RESUMO

The central neural pathways involved in fear-evoked behaviour are highly conserved across mammalian species, and there is a consensus that understanding them is a fundamental step towards developing effective treatments for emotional disorders in man. The ventrolateral periaqueductal grey (vlPAG) has a well-established role in fear-evoked freezing behaviour. The neural pathways underlying autonomic and sensory consequences of vlPAG activation in fearful situations are well understood, but much less is known about the pathways that link vlPAG activity to distinct fear-evoked motor patterns essential for survival. In adult rats, we have identified a pathway linking the vlPAG to cerebellar cortex, which terminates as climbing fibres in lateral vermal lobule VIII (pyramis). Lesion of pyramis input-output pathways disrupted innate and fear-conditioned freezing behaviour. The disruption in freezing behaviour was strongly correlated to the reduction in the vlPAG-induced facilitation of α-motoneurone excitability observed after lesions of the pyramis. The increased excitability of α-motoneurones during vlPAG activation may therefore drive the increase in muscle tone that underlies expression of freezing behaviour. By identifying the cerebellar pyramis as a critical component of the neural network subserving emotionally related freezing behaviour, the present study identifies novel neural pathways that link the PAG to fear-evoked motor responses.


Assuntos
Cerebelo/fisiologia , Medo/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Reflexo/fisiologia , Animais , Masculino , Vias Neurais/fisiologia , Ratos , Ratos Wistar
11.
J Neurosci ; 34(12): 4148-60, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24647936

RESUMO

Pontospinal noradrenergic neurons are thought to form part of a descending endogenous analgesic system that exerts inhibitory influences on spinal nociception. Using optogenetic targeting, we tested the hypothesis that excitation of the locus ceruleus (LC) is antinociceptive. We transduced rat LC neurons by direct injection of a lentiviral vector expressing channelrhodopsin2 under the control of the PRS promoter. Subsequent optoactivation of the LC evoked repeatable, robust, antinociceptive (+4.7°C ± 1.0, p < 0.0001) or pronociceptive (-4.4°C ± 0.7, p < 0.0001) changes in hindpaw thermal withdrawal thresholds. Post hoc anatomical characterization of the distribution of transduced somata referenced against the position of the optical fiber and subsequent further functional analysis showed that antinociceptive actions were evoked from a distinct, ventral subpopulation of LC neurons. Therefore, the LC is capable of exerting potent, discrete, bidirectional influences on thermal nociception that are produced by specific subpopulations of noradrenergic neurons. This reflects an underlying functional heterogeneity of the influence of the LC on the processing of nociceptive information.


Assuntos
Locus Cerúleo/fisiopatologia , Neurônios/fisiologia , Nociceptividade/fisiologia , Dor/fisiopatologia , Animais , Temperatura Alta , Masculino , Optogenética , Medição da Dor , Ratos , Ratos Wistar
12.
Front Syst Neurosci ; 8: 4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24550789

RESUMO

Although recent neuroanatomical evidence has demonstrated closed-loop connectivity between prefrontal cortex and the cerebellum, the physiology of cerebello-cerebral circuits and the extent to which cerebellar output modulates neuronal activity in neocortex during behavior remain relatively unexplored. We show that electrical stimulation of the contralateral cerebellar fastigial nucleus (FN) in awake, behaving rats evokes distinct local field potential (LFP) responses (onset latency ~13 ms) in the prelimbic (PrL) subdivision of the medial prefrontal cortex. Trains of FN stimulation evoke heterogeneous patterns of response in putative pyramidal cells in frontal and prefrontal regions in both urethane-anesthetized and awake, behaving rats. However, the majority of cells showed decreased firing rates during stimulation and subsequent rebound increases; more than 90% of cells showed significant changes in response. Simultaneous recording of on-going LFP activity from FN and PrL while rats were at rest or actively exploring an open field arena revealed significant network coherence restricted to the theta frequency range (5-10 Hz). Granger causality analysis indicated that this coherence was significantly directed from cerebellum to PrL during active locomotion. Our results demonstrate the presence of a cerebello-prefrontal pathway in rat and reveal behaviorally dependent coordinated network activity between the two structures, which could facilitate transfer of sensorimotor information into ongoing neocortical processing during goal directed behaviors.

13.
Artigo em Inglês | MEDLINE | ID: mdl-23630468

RESUMO

How does the cerebellum, the brain's largest sensorimotor structure, contribute to complex behaviors essential to survival? While we know much about the role of limbic and closely associated brainstem structures in relation to a variety of emotional, sensory, or motivational stimuli, we know very little about how these circuits interact with the cerebellum to generate appropriate patterns of behavioral response. Here we focus on evidence suggesting that the olivo-cerebellar system may link to survival networks via interactions with the midbrain periaqueductal gray, a structure with a well known role in expression of survival responses. As a result of this interaction we argue that, in addition to important roles in motor control, the inferior olive, and related olivo-cortico-nuclear circuits, should be considered part of a larger network of brain structures involved in coordinating survival behavior through the selective relaying of "teaching signals" arising from higher centers associated with emotional behaviors.


Assuntos
Adaptação Psicológica/fisiologia , Cerebelo/fisiologia , Rede Nervosa/fisiologia , Núcleo Olivar/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Animais , Humanos
14.
Artigo em Inglês | MEDLINE | ID: mdl-19738932

RESUMO

Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non-motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL) and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35 ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre); they were not attenuated by local anaesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency (approximately 30 ms). Single unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s) of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...