Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 291(7): 3595-612, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26694611

RESUMO

The formation of functional amyloid must be carefully regulated to prevent the accumulation of potentially toxic products. Premelanosome protein (PMEL) forms non-toxic functional amyloid fibrils that assemble into sheets upon which melanins ultimately are deposited within the melanosomes of pigment cells. PMEL is synthesized in the endoplasmic reticulum but forms amyloid only within post-Golgi melanosome precursors; thus, PMEL must traverse the secretory pathway in a non-amyloid form. Here, we identified two pre-amyloid PMEL intermediates that likely regulate the timing of fibril formation. Analyses by non-reducing SDS-PAGE, size exclusion chromatography, and sedimentation velocity revealed two native high Mr disulfide-bonded species that contain Golgi-modified forms of PMEL. These species correspond to disulfide bond-containing dimeric and monomeric PMEL isoforms that contain no other proteins as judged by two-dimensional PAGE of metabolically labeled/immunoprecipitated PMEL and by mass spectrometry of affinity-purified complexes. Metabolic pulse-chase analyses, small molecule inhibitor treatments, and evaluation of site-directed mutants suggest that the PMEL dimer forms around the time of endoplasmic reticulum exit and is resolved by disulfide bond rearrangement into a monomeric form within the late Golgi or a post-Golgi compartment. Mutagenesis of individual cysteine residues within the non-amyloid cysteine-rich Kringle-like domain stabilizes the disulfide-bonded dimer and impairs fibril formation as determined by electron microscopy. Our data show that the Kringle-like domain facilitates the resolution of disulfide-bonded PMEL dimers and promotes PMEL functional amyloid formation, thereby suggesting that PMEL dimers must be resolved to monomers to generate functional amyloid fibrils.


Assuntos
Amiloide/química , Modelos Moleculares , Corpos Multivesiculares/ultraestrutura , Processamento de Proteína Pós-Traducional , Antígeno gp100 de Melanoma/química , Substituição de Aminoácidos , Amiloide/metabolismo , Amiloide/ultraestrutura , Linhagem Celular Tumoral , Cisteína/química , Cisteína/metabolismo , Cistina/química , Cistina/metabolismo , Dimerização , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Kringles , Microscopia Eletrônica de Transmissão , Peso Molecular , Corpos Multivesiculares/química , Corpos Multivesiculares/metabolismo , Mutagênese Sítio-Dirigida , Mutação Puntual , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Antígeno gp100 de Melanoma/genética , Antígeno gp100 de Melanoma/metabolismo
2.
Proc Natl Acad Sci U S A ; 110(26): 10658-63, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23754390

RESUMO

Amyloids are often associated with pathologic processes such as in Alzheimer's disease (AD), but can also underlie physiological processes such as pigmentation. Formation of pathological and functional amyloidogenic substrates can require precursor processing by proteases, as exemplified by the generation of Aß peptide from amyloid precursor protein (APP) by beta-site APP cleaving enzyme (BACE)1 and γ-secretase. Proteolytic processing of the pigment cell-specific Melanocyte Protein (PMEL) is also required to form functional amyloid fibrils during melanogenesis, but the enzymes involved are incompletely characterized. Here we show that the BACE1 homologue BACE2 processes PMEL to generate functional amyloids. BACE2 is highly expressed in pigment cells and Bace2(-/-) but not Bace1(-/-) mice display coat color defects, implying a specific role for BACE2 during melanogenesis. By using biochemical and morphological analyses, combined with RNA silencing, pharmacologic inhibition, and BACE2 overexpression in a human melanocytic cell line, we show that BACE2 cleaves the integral membrane form of PMEL within the juxtamembrane domain, releasing the PMEL luminal domain into endosomal precursors for the formation of amyloid fibrils and downstream melanosome morphogenesis. These studies identify an amyloidogenic substrate of BACE2, reveal an important physiological role for BACE2 in pigmentation, and highlight analogies in the generation of PMEL-derived functional amyloids and APP-derived pathological amyloids.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Amiloide/biossíntese , Ácido Aspártico Endopeptidases/metabolismo , Melanossomas/metabolismo , Antígeno gp100 de Melanoma/metabolismo , Secretases da Proteína Precursora do Amiloide/deficiência , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/deficiência , Ácido Aspártico Endopeptidases/genética , Linhagem Celular , Células HeLa , Humanos , Melaninas/biossíntese , Melanócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Epitélio Pigmentado Ocular/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Pigmentação da Pele/genética , Pigmentação da Pele/fisiologia
3.
Pigment Cell Melanoma Res ; 26(4): 470-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23452376

RESUMO

Proteolytic fragments of the pigment cell-specific glycoprotein, PMEL, form the amyloid fibrillar matrix underlying melanins in melanosomes. The fibrils form within multivesicular endosomes to which PMEL is selectively sorted and that serve as melanosome precursors. GPNMB is a tissue-restricted glycoprotein with substantial sequence homology to PMEL, but no known function, and was proposed to localize to non-fibrillar domains of distinct melanosome subcompartments in melanocytes. Here we confirm that GPNMB localizes to compartments distinct from the PMEL-containing multivesicular premelanosomes or late endosomes in melanocytes and HeLa cells, respectively, and is largely absent from fibrils. Using domain swapping, the unique PMEL localization is ascribed to its polycystic kidney disease (PKD) domain, whereas the homologous PKD domain of GPNMB lacks apparent sorting function. The difference likely reflects extensive modification of the GPNMB PKD domain by N-glycosylation, nullifying its sorting function. These results reveal the molecular basis for the distinct trafficking and morphogenetic properties of PMEL and GPNMB and support a deterministic function of the PMEL PKD domain in both protein sorting and amyloidogenesis.


Assuntos
Amiloide/química , Endossomos/metabolismo , Melanossomas/metabolismo , Glicoproteínas de Membrana/química , Antígeno gp100 de Melanoma/química , Linhagem Celular Tumoral , DNA Complementar/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosilação , Células HeLa , Humanos , Melaninas/química , Melanócitos/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/metabolismo
4.
Pigment Cell Melanoma Res ; 26(3): 300-15, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23350640

RESUMO

PMEL is a pigment cell-specific protein responsible for the formation of fibrillar sheets within the pigment organelle, the melanosome. The fibrillar sheets serve as a template upon which melanins polymerize as they are synthesized. The PMEL fibrils are required for optimal pigment cell function, as animals that either lack PMEL expression or express mutant PMEL variants show varying degrees of hypopigmentation and pigment cell inviability. The PMEL fibrils have biophysical properties of amyloid, a protein fold that is frequently associated with neurodegenerative and other diseases. However, PMEL is one of a growing number of non-pathogenic amyloid proteins that contribute to the function of the cell and/or organism that produces them. Understanding how PMEL generates amyloid in a non-pathogenic manner might provide insights into how to avoid toxicity due to pathological amyloid formation. In this review, we summarize and reconcile data concerning the fate of PMEL from its site of synthesis in the endoplasmic reticulum to newly formed melanosomes and the role of distinct PMEL subdomains in trafficking and amyloid fibril formation. We then discuss how its progression through the secretory pathway into the endosomal system might allow for the regulated and non-toxic conversion of PMEL into an ordered amyloid polymer.


Assuntos
Amiloide/biossíntese , Melanócitos/metabolismo , Modelos Biológicos , Antígeno gp100 de Melanoma/metabolismo , Animais , Humanos , Melanócitos/ultraestrutura , Especificidade de Órgãos , Antígeno gp100 de Melanoma/ultraestrutura
5.
PLoS Genet ; 7(9): e1002285, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21949658

RESUMO

PMEL is an amyloidogenic protein that appears to be exclusively expressed in pigment cells and forms intralumenal fibrils within early stage melanosomes upon which eumelanins deposit in later stages. PMEL is well conserved among vertebrates, and allelic variants in several species are associated with reduced levels of eumelanin in epidermal tissues. However, in most of these cases it is not clear whether the allelic variants reflect gain-of-function or loss-of-function, and no complete PMEL loss-of-function has been reported in a mammal. Here, we have created a mouse line in which the Pmel gene has been inactivated (Pmel⁻/⁻). These mice are fully viable, fertile, and display no obvious developmental defects. Melanosomes within Pmel⁻/⁻ melanocytes are spherical in contrast to the oblong shape present in wild-type animals. This feature was documented in primary cultures of skin-derived melanocytes as well as in retinal pigment epithelium cells and in uveal melanocytes. Inactivation of Pmel has only a mild effect on the coat color phenotype in four different genetic backgrounds, with the clearest effect in mice also carrying the brown/Tyrp1 mutation. This phenotype, which is similar to that observed with the spontaneous silver mutation in mice, strongly suggests that other previously described alleles in vertebrates with more striking effects on pigmentation are dominant-negative mutations. Despite a mild effect on visible pigmentation, inactivation of Pmel led to a substantial reduction in eumelanin content in hair, which demonstrates that PMEL has a critical role for maintaining efficient epidermal pigmentation.


Assuntos
Melaninas/biossíntese , Melanossomas/metabolismo , Pigmentação/genética , Antígeno gp100 de Melanoma/genética , Antígeno gp100 de Melanoma/metabolismo , Alelos , Animais , Células Cultivadas , Células Epidérmicas , Epiderme/metabolismo , Cor de Cabelo/genética , Células HeLa , Humanos , Melaninas/genética , Melanossomas/ultraestrutura , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Mutação , Oxirredutases/metabolismo , Fenótipo , Pele/metabolismo
6.
PLoS Genet ; 7(9): e1002286, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21949659

RESUMO

PMEL is a pigment cell-specific protein that forms physiological amyloid fibrils upon which melanins ultimately deposit in the lumen of the pigment organelle, the melanosome. Whereas hypomorphic PMEL mutations in several species result in a mild pigment dilution that is inherited in a recessive manner, PMEL alleles found in the Dominant white (DW) chicken and Silver horse (HoSi)--which bear mutations that alter the PMEL transmembrane domain (TMD) and that are thus outside the amyloid core--are associated with a striking loss of pigmentation that is inherited in a dominant fashion. Here we show that the DW and HoSi mutations alter PMEL TMD oligomerization and/or association with membranes, with consequent formation of aberrantly packed fibrils. The aberrant fibrils are associated with a loss of pigmentation in cultured melanocytes, suggesting that they inhibit melanin production and/or melanosome integrity. A secondary mutation in the Smoky chicken, which reverts the dominant DW phenotype, prevents the accumulation of PMEL in fibrillogenic compartments and thus averts DW-associated pigment loss; a secondary mutation found in the Dun chicken likely dampens a HoSi-like dominant mutation in a similar manner. We propose that the DW and HoSi mutations alter the normally benign amyloid to a pathogenic form that antagonizes melanosome function, and that the secondary mutations found in the Smoky and Dun chickens revert or dampen pathogenicity by functioning as null alleles, thus preventing the formation of aberrant fibrils. We speculate that PMEL mutations can model the conversion between physiological and pathological amyloid.


Assuntos
Amiloide/biossíntese , Melaninas/biossíntese , Pigmentação/genética , Antígeno gp100 de Melanoma/genética , Antígeno gp100 de Melanoma/metabolismo , Sequência de Aminoácidos , Amiloide/genética , Animais , Células Cultivadas , Galinhas , Células HeLa , Cavalos , Humanos , Melaninas/genética , Melanócitos/ultraestrutura , Melanossomas/genética , Melanossomas/ultraestrutura , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína/genética , Homologia de Sequência de Aminoácidos
7.
J Biol Chem ; 284(51): 35543-55, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19840945

RESUMO

Pmel17 is a transmembrane protein that mediates the early steps in the formation of melanosomes, the subcellular organelles of melanocytes in which melanin pigments are synthesized and stored. In melanosome precursor organelles, proteolytic fragments of Pmel17 form insoluble, amyloid-like fibrils upon which melanins are deposited during melanosome maturation. The mechanism(s) by which Pmel17 becomes competent to form amyloid are not fully understood. To better understand how amyloid formation is regulated, we have defined the domains within Pmel17 that promote fibril formation in vitro. Using purified recombinant fragments of Pmel17, we show that two regions, an N-terminal domain of unknown structure and a downstream domain with homology to a polycystic kidney disease-1 repeat, efficiently form amyloid in vitro. Analyses of fibrils formed in melanocytes confirm that the polycystic kidney disease-1 domain forms at least part of the physiological amyloid core. Interestingly, this same domain is also required for the intracellular trafficking of Pmel17 to multivesicular compartments within which fibrils begin to form. Although a domain of imperfect repeats (RPT) is required for fibril formation in vivo and is a component of fibrils in melanosomes, RPT is not necessary for fibril formation in vitro and in isolation is unable to adopt an amyloid fold in a physiologically relevant time frame. These data define the structural core of Pmel17 amyloid, imply that the RPT domain plays a regulatory role in timing amyloid conversion, and suggest that fibril formation might be physically linked with multivesicular body sorting.


Assuntos
Amiloide/metabolismo , Melanossomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Amiloide/química , Amiloide/genética , Células HeLa , Humanos , Melanossomas/química , Melanossomas/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Dobramento de Proteína , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Antígeno gp100 de Melanoma
8.
Dev Biol ; 313(1): 210-24, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18022614

RESUMO

Wnt/beta-catenin signaling plays key roles in tooth development, but how this pathway intersects with the complex interplay of signaling factors regulating dental morphogenesis has been unclear. We demonstrate that Wnt/beta-catenin signaling is active at multiple stages of tooth development. Mutation of beta-catenin to a constitutively active form in oral epithelium causes formation of large, misshapen tooth buds and ectopic teeth, and expanded expression of signaling molecules important for tooth development. Conversely, expression of key morphogenetic regulators including Bmp4, Msx1, and Msx2 is downregulated in embryos expressing the secreted Wnt inhibitor Dkk1 which blocks signaling in epithelial and underlying mesenchymal cells. Similar phenotypes are observed in embryos lacking epithelial beta-catenin, demonstrating a requirement for Wnt signaling within the epithelium. Inducible Dkk1 expression after the bud stage causes formation of blunted molar cusps, downregulation of the enamel knot marker p21, and loss of restricted ectodin expression, revealing requirements for Wnt activity in maintaining secondary enamel knots. These data place Wnt/beta-catenin signaling upstream of key morphogenetic signaling pathways at multiple stages of tooth development and indicate that tight regulation of this pathway is essential both for patterning tooth development in the dental lamina, and for controlling the shape of individual teeth.


Assuntos
Morfogênese , Dente/embriologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Camundongos , Odontogênese , Transdução de Sinais , Dente/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...