Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Earth Environ ; 2(1): 9, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33490970

RESUMO

Mercury is a one-plate planet that has experienced significant radial contraction primarily driven by interior cooling. In some previous studies aimed at estimating the total magnitude of contraction, numerous faults are assigned to positive relief landforms, many without evidence of origin by deformation, resulting in estimates of planetary radius reduction as large as 7 km. Here we use high-incidence angle image mosaics and topography from the MESSENGER mission to map Mercury's contractional landforms. Each landform is assigned a single, principal fault, resulting in an amount of contractional strain equivalent to a radius change of no more than 1 to 2 km. A small radius change since the end of heavy bombardment is consistent with Mercury's long-lived magnetic field and evidence of recent tectonic activity. It is concluded that the retention of interior heat and a lower degree of contraction may be facilitated by the insulating effect of a thick megaregolith.

2.
Geophys Res Lett ; 48(17): e2021GL093528, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35860428

RESUMO

The crust of Mercury has experienced contraction on a global scale. Contractional deformation is expressed by a broadly distributed network of lobate thrust fault scarps. The most likely principal source of stress is global contraction from cooling of Mercury's interior. Global contraction alone would be expected to result in a uniformly distributed population of thrust faults. Mercury's fault scarps, however, often occur in long, linear clusters or bands. An analysis of the contractional strain as a function of crustal thickness, estimated in two crustal thickness models (CT1 and CT2) derived from gravity and topography data obtained during the MESSENGER mission, indicates the greatest contractional strain occurs in crust 50-60 km thick. On Earth, mantle downwelling can thicken and compress overlying crust, regionally concentrating thrust faults. Clusters of lobate scarps collocated with regions of thick crust suggest downward mantle flow contributed to the localization of lithosphere-penetrating thrust faults.

3.
Science ; 333(6051): 1853-6, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21960625

RESUMO

MESSENGER observations from Mercury orbit reveal that a large contiguous expanse of smooth plains covers much of Mercury's high northern latitudes and occupies more than 6% of the planet's surface area. These plains are smooth, embay other landforms, are distinct in color, show several flow features, and partially or completely bury impact craters, the sizes of which indicate plains thicknesses of more than 1 kilometer and multiple phases of emplacement. These characteristics, as well as associated features, interpreted to have formed by thermal erosion, indicate emplacement in a flood-basalt style, consistent with x-ray spectrometric data indicating surface compositions intermediate between those of basalts and komatiites. The plains formed after the Caloris impact basin, confirming that volcanism was a globally extensive process in Mercury's post-heavy bombardment era.

4.
Science ; 329(5994): 936-40, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20724632

RESUMO

Lunar Reconnaissance Orbiter Camera images reveal previously undetected lobate thrust-fault scarps and associated meter-scale secondary tectonic landforms that include narrow extensional troughs or graben, splay faults, and multiple low-relief terraces. Lobate scarps are among the youngest landforms on the Moon, based on their generally crisp appearance, lack of superposed large-diameter impact craters, and the existence of crosscut small-diameter impact craters. Identification of previously known scarps was limited to high-resolution Apollo Panoramic Camera images confined to the equatorial zone. Fourteen lobate scarps were identified, seven of which are at latitudes greater than +/-60 degrees, indicating that the thrust faults are globally distributed. This detection, coupled with the very young apparent age of the faults, suggests global late-stage contraction of the Moon.

5.
Science ; 329(5992): 668-71, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20647421

RESUMO

During its first two flybys of Mercury, the MESSENGER spacecraft acquired images confirming that pervasive volcanism occurred early in the planet's history. MESSENGER's third Mercury flyby revealed a 290-kilometer-diameter peak-ring impact basin, among the youngest basins yet seen, having an inner floor filled with spectrally distinct smooth plains. These plains are sparsely cratered, postdate the formation of the basin, apparently formed from material that once flowed across the surface, and are therefore interpreted to be volcanic in origin. An irregular depression surrounded by a halo of bright deposits northeast of the basin marks a candidate explosive volcanic vent larger than any previously identified on Mercury. Volcanism on the planet thus spanned a considerable duration, perhaps extending well into the second half of solar system history.

6.
Science ; 324(5927): 613-8, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19407196

RESUMO

Mapping the distribution and extent of major terrain types on a planet's surface helps to constrain the origin and evolution of its crust. Together, MESSENGER and Mariner 10 observations of Mercury now provide a near-global look at the planet, revealing lateral and vertical heterogeneities in the color and thus composition of Mercury's crust. Smooth plains cover approximately 40% of the surface, and evidence for the volcanic origin of large expanses of plains suggests that a substantial portion of the crust originated volcanically. A low-reflectance, relatively blue component affects at least 15% of the surface and is concentrated in crater and basin ejecta. Its spectral characteristics and likely origin at depth are consistent with its apparent excavation from a lower crust or upper mantle enriched in iron- and titanium-bearing oxides.

7.
Science ; 324(5927): 618-21, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19407197

RESUMO

MESSENGER's second Mercury flyby revealed a ~715-kilometer-diameter impact basin, the second-largest well-preserved basin-scale impact structure known on the planet. The Rembrandt basin is comparable in age to the Caloris basin, is partially flooded by volcanic plains, and displays a unique wheel-and-spoke-like pattern of basin-radial and basin-concentric wrinkle ridges and graben. Stratigraphic relations indicate a multistaged infilling and deformational history involving successive or overlapping phases of contractional and extensional deformation. The youngest deformation of the basin involved the formation of a approximately 1000-kilometer-long lobate scarp, a product of the global cooling and contraction of Mercury.

8.
Science ; 321(5885): 59-62, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18599768

RESUMO

In January 2008, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft became the first probe to fly past the planet Mercury in 33 years. The encounter revealed that Mercury is a dynamic system; its liquid iron-rich outer core is coupled through a dominantly dipolar magnetic field to the surface, exosphere, and magnetosphere, all of which interact with the solar wind. MESSENGER images confirm that lobate scarps are the dominant tectonic landform and record global contraction associated with cooling of the planet. The history of contraction can be related to the history of volcanism and cratering, and the total contractional strain is at least one-third greater than inferred from Mariner 10 images. On the basis of measurements of thermal neutrons made during the flyby, the average abundance of iron in Mercury's surface material is less than 6% by weight.

9.
Science ; 321(5885): 66-9, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18599770

RESUMO

Multispectral images of Mercury obtained by the MESSENGER spacecraft reveal that its surface has an overall relatively low reflectance with three large-scale units identified on the basis of reflectance and slope (0.4 to 1.0 micrometer). A higher-reflectance, relatively red material occurs as a distinct class of smooth plains that were likely emplaced volcanically; a lower-reflectance material with a lesser spectral slope may represent a distinct crustal component enriched in opaque minerals, possibly more common at depth. A spectrally intermediate terrain probably forms most of the upper crust. Three other spectrally distinct but spatially restricted units include fresh crater ejecta less affected by space weathering than other surface materials; high-reflectance deposits seen in some crater floors; and moderately high-reflectance, relatively reddish material associated with rimless depressions.

10.
Science ; 321(5885): 69-72, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18599771

RESUMO

The origin of plains on Mercury, whether by volcanic flooding or impact ejecta ponding, has been controversial since the Mariner 10 flybys (1974-75). High-resolution images (down to 150 meters per pixel) obtained during the first MESSENGER flyby show evidence for volcanic vents around the Caloris basin inner margin and demonstrate that plains were emplaced sequentially inside and adjacent to numerous large impact craters, to thicknesses in excess of several kilometers. Radial graben and a floor-fractured crater may indicate intrusive activity. These observations, coupled with additional evidence from color images and impact crater size-frequency distributions, support a volcanic origin for several regions of plains and substantiate the important role of volcanism in the geological history of Mercury.

11.
Science ; 321(5885): 73-6, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18599772

RESUMO

The Caloris basin, the youngest known large impact basin on Mercury, is revealed in MESSENGER images to be modified by volcanism and deformation in a manner distinct from that of lunar impact basins. The morphology and spatial distribution of basin materials themselves closely match lunar counterparts. Evidence for a volcanic origin of the basin's interior plains includes embayed craters on the basin floor and diffuse deposits surrounding rimless depressions interpreted to be of pyroclastic origin. Unlike lunar maria, the volcanic plains in Caloris are higher in albedo than surrounding basin materials and lack spectral evidence for ferrous iron-bearing silicates. Tectonic landforms, contractional wrinkle ridges and extensional troughs, have distributions and age relations different from their counterparts in and around lunar basins, indicating a different stress history.

12.
Science ; 318(5853): 1125-8, 2007 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17975034

RESUMO

The equatorial Medusae Fossae Formation (MFF) is enigmatic and perhaps among the youngest geologic deposits on Mars. They are thought to be composed of volcanic ash, eolian sediments, or an ice-rich material analogous to polar layered deposits. The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument aboard the Mars Express Spacecraft has detected nadir echoes offset in time-delay from the surface return in orbits over MFF material. These echoes are interpreted to be from the subsurface interface between the MFF material and the underlying terrain. The delay time between the MFF surface and subsurface echoes is consistent with massive deposits emplaced on generally planar lowlands materials with a real dielectric constant of approximately 2.9 +/- 0.4. The real dielectric constant and the estimated dielectric losses are consistent with a substantial component of water ice. However, an anomalously low-density, ice-poor material cannot be ruled out. If ice-rich, the MFF must have a higher percentage of dust and sand than polar layered deposits. The volume of water in an ice-rich MFF deposit would be comparable to that of the south polar layered deposits.


Assuntos
Marte , Meio Ambiente Extraterreno , Sedimentos Geológicos , Gelo , Radar
13.
Science ; 316(5821): 92-5, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17363628

RESUMO

The ice-rich south polar layered deposits of Mars were probed with the Mars Advanced Radar for Subsurface and Ionospheric Sounding on the Mars Express orbiter. The radar signals penetrate deep into the deposits (more than 3.7 kilometers). For most of the area, a reflection is detected at a time delay that is consistent with an interface between the deposits and the substrate. The reflected power from this interface indicates minimal attenuation of the signal, suggesting a composition of nearly pure water ice. Maps were generated of the topography of the basal interface and the thickness of the layered deposits. A set of buried depressions is seen within 300 kilometers of the pole. The thickness map shows an asymmetric distribution of the deposits and regions of anomalous thickness. The total volume is estimated to be 1.6 x 10(6) cubic kilometers, which is equivalent to a global water layer approximately 11 meters thick.


Assuntos
Gelo , Marte , Água , Meio Ambiente Extraterreno , Radar , Astronave
14.
Nature ; 444(7121): 905-8, 2006 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17167480

RESUMO

A hemispheric dichotomy on Mars is marked by the sharp contrast between the sparsely cratered northern lowland plains and the heavily cratered southern highlands. Mechanisms proposed to remove ancient crust or form younger lowland crust include one or more giant impacts, subcrustal transport by mantle convection, the generation of thinner crust by plate tectonics, and mantle overturn following solidification of an early magma ocean. The age of the northern lowland crust is a significant constraint on these models. The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument on the European Space Agency's Mars Express spacecraft is providing new constraints on the martian subsurface. Here we show evidence of buried impact basins ranging in diameter from about 130 km to 470 km found over approximately 14 per cent of the northern lowlands. The number of detected buried basins >200 km in diameter indicates that the lowland crust is ancient, dating back to the Early Noachian epoch. This crater density is a lower limit because of the likelihood that not all buried basins in the area surveyed by MARSIS have been detected. An Early Noachian age for the lowland crust has been previously suggested on the basis of a large number of quasi-circular topographic depressions interpreted to be evidence of buried basins. Only a few of these depressions in the area surveyed by MARSIS, however, correlate with the detected subsurface echoes. On the basis of the MARSIS data, we conclude that the northern lowland crust is at least as old as the oldest exposed highland crust. This suggests that the crustal dichotomy formed early in the geologic evolution of Mars.

15.
Science ; 310(5756): 1925-8, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-16319122

RESUMO

The martian subsurface has been probed to kilometer depths by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument aboard the Mars Express orbiter. Signals penetrate the polar layered deposits, probably imaging the base of the deposits. Data from the northern lowlands of Chryse Planitia have revealed a shallowly buried quasi-circular structure about 250 kilometers in diameter that is interpreted to be an impact basin. In addition, a planar reflector associated with the basin structure may indicate the presence of a low-loss deposit that is more than 1 kilometer thick.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...