Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
J Appl Crystallogr ; 56(Pt 5): 1361-1370, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791355

RESUMO

Serial crystallography has emerged as an important tool for structural studies of integral membrane proteins. The ability to collect data from micrometre-sized weakly diffracting crystals at room temperature with minimal radiation damage has opened many new opportunities in time-resolved studies and drug discovery. However, the production of integral membrane protein microcrystals in lipidic cubic phase at the desired crystal density and quantity is challenging. This paper introduces VIALS (versatile approach to high-density microcrystals in lipidic cubic phase for serial crystallography), a simple, fast and efficient method for preparing hundreds of microlitres of high-density microcrystals suitable for serial X-ray diffraction experiments at both synchrotron and free-electron laser sources. The method is also of great benefit for rational structure-based drug design as it facilitates in situ crystal soaking and rapid determination of many co-crystal structures. Using the VIALS approach, room-temperature structures are reported of (i) the archaerhodopsin-3 protein in its dark-adapted state and 110 ns photocycle intermediate, determined to 2.2 and 1.7 Å, respectively, and (ii) the human A2A adenosine receptor in complex with two different ligands determined to a resolution of 3.5 Å.

2.
Eur Biophys J ; 52(1-2): 39-51, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36786921

RESUMO

From the discovery of the first membrane-interacting polymer, styrene maleic-acid (SMA), there has been a rapid development of membrane solubilising polymers. These new polymers can solubilise membranes under a wide range of conditions and produce varied sizes of nanoparticles, yet there has been a lack of broad comparison between the common polymer types and solubilising conditions. Here, we present a comparative study on the three most common commercial polymers: SMA 3:1, SMA 2:1, and DIBMA. Additionally, this work presents, for the first time, a comparative characterisation of polymethacrylate copolymer (PMA). Absorbance and dynamic light scattering measurements were used to evaluate solubilisation across key buffer conditions in a simple, adaptable assay format that looked at pH, salinity, and divalent cation concentration. Lipid-polymer nanoparticles formed from SMA variants were found to be the most susceptible to buffer effects, with nanoparticles from either zwitterionic DMPC or POPC:POPG (3:1) bilayers only forming in low to moderate salinity (< 600 mM NaCl) and above pH 6. DIBMA-lipid nanoparticles could be formed above a pH of 5 and were stable in up to 4 M NaCl. Similarly, PMA-lipid nanoparticles were stable in all NaCl concentrations tested (up to 4 M) and a broad pH range (3-10). However, for both DIBMA and PMA nanoparticles there is a severe penalty observed for bilayer solubilisation in non-optimal conditions or when using a charged membrane. Additionally, lipid fluidity of the DMPC-polymer nanoparticles was analysed through cw-EPR, showing no cooperative gel-fluid transition as would be expected for native-like lipid membranes.


Assuntos
Nanopartículas , Polímeros , Dimiristoilfosfatidilcolina , Cloreto de Sódio , Bicamadas Lipídicas , Estireno , Maleatos
3.
J Am Chem Soc ; 144(48): 22083-22092, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36399663

RESUMO

Bacteriorhodopsin (bR) is a light-driven microbial receptor, and lysine 159 (K159) is a charged residue on the cytoplasmic (CP) side of its E-F loop. However, its conformation and function remain unknown due to fast surface dynamics. By utilizing a 13C, 15N-labeled lysine (K) as an isotope probe, we created a network of site-specific amide-I vibrational signatures (backbone carbonyl stretch) to identify the frequency contribution of the labeled residues to the amide-I excitonic band structure. Thus, the red-shifted amide-I frequency in the 13C, 15N-lysine-labeled bR (uK-bR) to the unlabeled bR (WT-bR) could be differentiated and examined by ultrafast two-dimensional vibrational echo infrared (2D IR) spectroscopy. Our results showed that the backbone carbonyl of K159 is located at a high frequency of ca. 1693 cm-1 and has a vibrational excited-state relaxation time shorter than the bulk helical amide-I mode at the same frequency, suggesting that K159 may possess a hydrogen-bonded γ-turn structure with E161, one of the carboxylate residues on the CP surface of bR. The 2D solid-state NMR study of uK-bR also revealed conformational dependent lysine residues, from which K159 was found to involve the turn motif. This γ-turn structure maintained by K159 may help to stabilize the E-F loop and support E161 in attracting protons from the bulk during the late stage of the bR photocycle. The combined spectroscopic approach illustrated in this work may be applied to map residue-specific local structures and dynamics of other receptors and large proteins.


Assuntos
Bacteriorodopsinas , Fotorreceptores Microbianos , Lisina , Análise Espectral , Amidas
4.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805918

RESUMO

S-TGA-1 and PGP-Me are native archaeal lipids associated with the bacteriorhodopsin (bR) trimer and contribute to protein stabilization and native dynamics for proton transfer. However, little is known about the underlying molecular mechanism of how these lipids regulate bR trimerization and efficient photocycling. Here, we explored the specific binding of S-TGA-1 and PGP-Me with the bR trimer and elucidated how specific interactions modulate the bR trimeric structure and proton release and uptake using long-term atomistic molecular dynamic simulations. Our results showed that S-TGA-1 and PGP-Me are essential for stabilizing the bR trimer and maintaining the coherent conformational dynamics necessary for proton transfer. The specific binding of S-TGA-1 with W80 and K129 regulates proton release on the extracellular surface by forming a "Glu-shared" model. The interaction of PGP-Me with K40 ensures proton uptake by accommodating the conformation of the helices to recruit enough water molecules on the cytoplasmic side. The present study results could fill in the theoretical gaps of studies on the functional role of archaeal lipids and could provide a reference for other membrane proteins containing similar archaeal lipids.


Assuntos
Bacteriorodopsinas , Archaea/metabolismo , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Lipídeos/química , Estrutura Secundária de Proteína , Prótons
5.
Acta Crystallogr D Struct Biol ; 78(Pt 1): 52-58, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981761

RESUMO

Room-temperature diffraction methods are highly desirable for dynamic studies of biological macromolecules, since they allow high-resolution structural data to be collected as proteins undergo conformational changes. For crystals grown in lipidic cubic phase (LCP), an extruder is commonly used to pass a stream of microcrystals through the X-ray beam; however, the sample quantities required for this method may be difficult to produce for many membrane proteins. A more sample-efficient environment was created using two layers of low X-ray transmittance polymer films to mount crystals of the archaerhodopsin-3 (AR3) photoreceptor and room-temperature diffraction data were acquired. By using transparent and opaque polymer films, two structures, one corresponding to the desensitized, dark-adapted (DA) state and the other to the ground or light-adapted (LA) state, were solved to better than 1.9 Šresolution. All of the key structural features of AR3 were resolved, including the retinal chromophore, which is present as the 13-cis isomer in the DA state and as the all-trans isomer in the LA state. The film-sandwich sample environment enables diffraction data to be recorded at room temperature in both illuminated and dark conditions, which more closely approximate those in vivo. This simple approach is applicable to a wide range of membrane proteins crystallized in LCP and light-sensitive samples in general at synchrotron and laboratory X-ray sources.


Assuntos
Proteínas de Membrana/química , Difração de Raios X/métodos , Proteínas Arqueais , Cristalização , Cristalografia por Raios X , Halorubrum/química , Isomerismo , Luz , Lipídeos/química , Fotorreceptores Microbianos , Polímeros , Bombas de Próton , Retina/química , Temperatura , Raios X
6.
Int J Biol Macromol ; 199: 42-50, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-34942208

RESUMO

The participation of amyloids in neurodegenerative diseases and functional processes has triggered the quest for methods allowing their direct detection in vivo. Despite the plethora of data, those methods are still lacking. The autofluorescence from the extended ß-sheets of amyloids is here used to track fibrillation of S. cerevisiae Golgi Reassembly and Stacking Protein (Grh1). Grh1 has been implicated in starvation-triggered unconventional protein secretion (UPS), and here its participation also in heat shock response (HSR) is suggested. Fluorescence Lifetime Imaging (FLIM) is used to detect fibril autofluorescence in cells (E. coli and yeast) under stress (starvation and higher temperature). The formation of Grh1 large complexes under stress is further supported by size exclusion chromatography and ultracentrifugation. The data show for the first time in vivo detection of amyloids without the use of extrinsic probes as well as bring new perspectives on the participation of Grh1 in UPS and HSR.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Amiloide/química , Escherichia coli/metabolismo , Conformação Proteica em Folha beta , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
7.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34948384

RESUMO

Aromatic residues are highly conserved in microbial photoreceptors and play crucial roles in the dynamic regulation of receptor functions. However, little is known about the dynamic mechanism of the functional role of those highly conserved aromatic residues during the receptor photocycle. Tyrosine 185 (Y185) is a highly conserved aromatic residue within the retinal binding pocket of bacteriorhodopsin (bR). In this study, we explored the molecular mechanism of the dynamic coupling of Y185 with the bR photocycle by automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) calculations and molecular dynamic (MD) simulations based on chemical shifts obtained by 2D solid-state NMR correlation experiments. We observed that Y185 plays a significant role in regulating the retinal cis-trans thermal equilibrium, stabilizing the pentagonal H-bond network, participating in the orientation switch of Schiff Base (SB) nitrogen, and opening the F42 gate by interacting with the retinal and several key residues along the proton translocation channel. Our findings provide a detailed molecular mechanism of the dynamic couplings of Y185 and the bR photocycle from a structural perspective. The method used in this paper may be applied to the study of other microbial photoreceptors.


Assuntos
Bacteriorodopsinas/química , Halobacterium salinarum/química , Sítios de Ligação , Ligação de Hidrogênio , Luz , Simulação de Dinâmica Molecular , Conformação Proteica , Teoria Quântica , Retinaldeído/química , Tirosina/química
8.
Biophys Rev ; 13(6): 875-877, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34815814
9.
Nano Lett ; 21(7): 2824-2831, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33787280

RESUMO

Integral membrane proteins pose considerable challenges to mass spectrometry (MS) owing to the complexity and diversity of the components in their native environment. Here, we use native MS to study the post-translational maturation of bacteriorhodopsin (bR) and archaerhodopsin-3 (AR3), using both octyl-glucoside detergent micelles and lipid-based nanoparticles. A lower collision energy was required to obtain well-resolved spectra for proteins in styrene-maleic acid copolymer (SMA) Lipodisqs than in membrane scaffold protein (MSP) Nanodiscs. By comparing spectra of membrane proteins prepared using the different membrane mimetics, we found that SMA may favor selective solubilization of correctly folded proteins and better preserve native lipid interactions than other membrane mimetics. Our spectra reveal the correlation between the post-translation modifications (PTMs), lipid-interactions, and protein-folding states of bR, providing insights into the process of maturation of the photoreceptor proteins.


Assuntos
Proteínas de Membrana , Nanopartículas , Bicamadas Lipídicas , Lipídeos , Espectrometria de Massas , Micelas
10.
Nat Commun ; 12(1): 629, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504778

RESUMO

Many transmembrane receptors have a desensitized state, in which they are unable to respond to external stimuli. The family of microbial rhodopsin proteins includes one such group of receptors, whose inactive or dark-adapted (DA) state is established in the prolonged absence of light. Here, we present high-resolution crystal structures of the ground (light-adapted) and DA states of Archaerhodopsin-3 (AR3), solved to 1.1 Å and 1.3 Å resolution respectively. We observe significant differences between the two states in the dynamics of water molecules that are coupled via H-bonds to the retinal Schiff Base. Supporting QM/MM calculations reveal how the DA state permits a thermodynamic equilibrium between retinal isomers to be established, and how this same change is prevented in the ground state in the absence of light. We suggest that the different arrangement of internal water networks in AR3 is responsible for the faster photocycle kinetics compared to homologs.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Água/química , Cristalografia por Raios X , Elétrons , Ligação de Hidrogênio , Isomerismo , Lipídeos/química , Conformação Molecular , Processamento de Proteína Pós-Traducional , Prótons , Retinaldeído/química , Retinaldeído/metabolismo
11.
Biochim Biophys Acta Biomembr ; 1863(1): 183441, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810489

RESUMO

G protein coupled receptors (GPCRs) function as guanine nucleotide exchange factors (GEFs) at heterotrimeric G proteins, and conduct this role embedded in a lipid bilayer. Detergents are widely used to solubilise GPCRs for structural and biophysical analysis, but are poor mimics of the lipid bilayer and may be deleterious to protein function. Amphipathic polymers have emerged as promising alternatives to detergents, which maintain a lipid environment around a membrane protein during purification. Of these polymers, the polymethacrylate (PMA) polymers have potential advantages over the most popular styrene maleic acid (SMA) polymer, but to date have not been applied to purification of membrane proteins. Here we use a class A GPCR, neurotensin receptor 1 (NTSR1), to explore detergent-free purification using PMA. By using an NTSR1-eGFP fusion protein expressed in Sf9 cells, a range of solubilisation conditions were screened, demonstrating the importance of solubilisation temperature, pH, NaCl concentration and the relative amounts of polymer and membrane sample. PMA-solubilised NTSR1 displayed compatibility with standard purification protocols and millimolar divalent cation concentrations. Moreover, the receptor in PMA discs showed stimulation of both Gq and Gi1 heterotrimers to an extent that was greater than that for the detergent-solubilised receptor. PMA therefore represents a viable alternative to SMA for membrane protein purification and has a potentially broad utility in studying GPCRs and other membrane proteins.


Assuntos
Ácidos Polimetacrílicos/química , Receptores de Neurotensina , Detergentes/química , Humanos , Receptores de Neurotensina/biossíntese , Receptores de Neurotensina/química , Receptores de Neurotensina/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Solubilidade
12.
Biophys Rev ; 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33215301

RESUMO

G protein-coupled receptors (GPCRs) are a large family of integral membrane proteins which conduct a wide range of biological roles and represent significant drug targets. Most biophysical and structural studies of GPCRs have been conducted on detergent-solubilised receptors, and it is clear that detergents can have detrimental effects on GPCR function. Simultaneously, there is increasing appreciation of roles for specific lipids in modulation of GPCR function. Lipid nanoparticles such as nanodiscs and styrene maleic acid lipid particles (SMALPs) offer opportunities to study integral membrane proteins in lipid environments, in a form that is soluble and amenable to structural and biophysical experiments. Here, we review the application of lipid nanoparticle technologies to the study of GPCRs, assessing the relative merits and limitations of each system. We highlight how these technologies can provide superior platforms to detergents for structural and biophysical studies of GPCRs and inform on roles for protein-lipid interactions in GPCR function.

13.
J Biomed Nanotechnol ; 16(4): 419-431, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32970975

RESUMO

Many promising pharmaceutically active compounds have low solubility in aqueous environments and their encapsulation into efficient drug delivery vehicles is crucial to increase their bioavailability. Lipodisq nanoparticles are approximately 10 nm in diameter and consist of a circular phospholipid bilayer, stabilized by an annulus of SMA (a hydrolysed copolymer of styrene and maleic anhydride). SMA is used extensively in structural biology to extract and stabilize integral membrane proteins for biophysical studies. Here, we assess the potential of these nanoparticles as drug delivery vehicles, determining their cytotoxicity and the in vivo excretion pathways of their polymer and lipid components. Doxorubicin-loaded Lipodisqs were cytotoxic across a panel of cancer cell lines, whereas nanoparticles without the drug had no effect on cell proliferation. Intracellular doxorubicin release from Lipodisqs in HeLa cells occurred in the low-pH environment of the endolysosomal system, consistent with the breakdown of the discoidal structure as the carboxylate groups of the SMA polymer become protonated. Biodistribution studies in mice showed that, unlike other nanoparticles injected intravenously, most of the Lipodisq components were recovered in the colon, consistent with rapid uptake by hepatocytes and excretion into bile. These data suggest that Lipodisqs have the potential to act as delivery vehicles for drugs and contrast agents.


Assuntos
Nanopartículas , Distribuição Tecidual , Animais , Linhagem Celular Tumoral , Doxorrubicina/toxicidade , Células HeLa , Humanos , Maleatos/toxicidade , Camundongos , Nanopartículas/toxicidade
14.
Sci Adv ; 6(33): eaav8207, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32851152

RESUMO

G protein-coupled receptors (GPCRs) are the largest and pharmaceutically most important class of membrane proteins encoded in the human genome, characterized by a seven-transmembrane helix architecture and a C-terminal amphipathic helix 8 (H8). In a minority of GPCR structures solved to date, H8 either is absent or adopts an unusual conformation. The controversial existence of H8 of the class A GPCR neurotensin receptor 1 (NTS1) has been examined here for the nonthermostabilized receptor in a functionally supporting membrane environment using electron paramagnetic resonance, molecular dynamics simulations, and circular dichroism. Lipid-protein interactions with phosphatidylserine and phosphatidylethanolamine lipids, in particular, stabilize the residues 374 to 390 of NTS1 into forming a helix. Furthermore, introduction of a helix-breaking proline residue in H8 elicited an increase in ß-arrestin-NTS1 interactions observed in pull-down assays, suggesting that the structure and/or dynamics of H8 might play an important role in GPCR signaling.


Assuntos
Arrestina , Receptores Acoplados a Proteínas G , Humanos , Lipídeos/química , Conformação Molecular , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/metabolismo
15.
FEBS J ; 287(15): 3255-3272, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31920006

RESUMO

The Golgi complex is a central component of the secretory pathway, responsible for several critical cellular functions in eukaryotes. The complex is organized by the Golgi matrix that includes the Golgi reassembly and stacking protein (GRASP), which was shown to be involved in cisternae stacking and lateral linkage in metazoan. GRASPs also have critical roles in other processes, with an unusual ability to interact with several different binding partners. The conserved N terminus of the GRASP family includes two PSD-95, DLG, and ZO-1 (PDZ) domains. Previous crystallographic studies of orthologues suggest that PDZ1 and PDZ2 have similar conformations and secondary structure content. However, PDZ1 alone mediates nearly all interactions between GRASPs and their partners. In this work, NMR, synchrotron radiation CD, and molecular dynamics (MD) were used to examine the structure, flexibility, and stability of the two constituent PDZ domains. GRASP PDZs are structured in an unusual ß3 α1 ß4 ß5 α2 ß6 ß1 ß2 secondary structural arrangement and NMR data indicate that the PDZ1 binding pocket is formed by a stable ß2 -strand and a more flexible and unstable α2 -helix, suggesting an explanation for the higher PDZ1 promiscuity. The conformational free energy profiles of the two PDZ domains were calculated using MD simulations. The data suggest that, after binding, the protein partner significantly reduces the conformational space that GRASPs can access by stabilizing one particular conformation, in a partner-dependent fashion. The structural flexibility of PDZ1, modulated by PDZ2, and the coupled, coordinated movement between the two PDZs enable GRASPs to interact with multiple partners, allowing them to function as promiscuous, multitasking proteins.


Assuntos
Proteínas da Matriz do Complexo de Golgi/química , Proteínas da Matriz do Complexo de Golgi/metabolismo , Domínios PDZ , Conformação Proteica , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Homologia de Sequência
16.
Biochim Biophys Acta Biomembr ; 1862(3): 183152, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31843475

RESUMO

Dopamine receptors (DRs) are class A G-Protein Coupled Receptors (GPCRs) prevalent in the central nervous system (CNS). These receptors mediate physiological functions ranging from voluntary movement and reward recognition to hormonal regulation and hypertension. Drugs targeting dopaminergic neurotransmission have been employed to treat several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, Huntington's disease, attention deficit hyperactivity disorder (ADHD), and Tourette's syndrome. In vivo, incorporation of GPCRs into lipid membranes is known to be key to their biological function and, by inference, maintenance of their tertiary structure. A further significant challenge in the structural and biochemical characterization of human DRs is their low levels of expression in mammalian cells. Thus, the purification and enrichment of DRs whilst retaining their structural integrity and function is highly desirable for biophysical studies. A promising new approach is the use of styrene-maleic acid (SMA) copolymer to solubilize GPCRs directly in their native environment, to produce polymer-assembled Lipodisqs (LQs). We have developed a novel methodology to yield detergent-free D1-containing Lipodisqs directly from HEK293f cells expressing wild-type human dopamine receptor 1 (D1). We demonstrate that D1 in the Lipodisq retains activity comparable to that in the native environment and report, for the first time, the affinity constant for the interaction of the peptide neurotransmitter neurotensin (NT) with D1, in the native state.


Assuntos
Bicamadas Lipídicas/química , Receptores de Dopamina D1/isolamento & purificação , Receptores Dopaminérgicos/isolamento & purificação , Linhagem Celular , Detergentes , Células HEK293 , Humanos , Maleatos/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores Acoplados a Proteínas G/isolamento & purificação , Estirenos/química
17.
J Chem Theory Comput ; 15(11): 6433-6443, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31639304

RESUMO

Proteins involved in peptide uptake and transport belong to the proton-coupled oligopeptide transporter (POT) family. Crystal structures of POT family members reveal a common fold consisting of two domains of six transmembrane α helices that come together to form a "V" shaped transporter with a central substrate binding site. Proton-coupled oligopeptide transporters operate through an alternate access mechanism, where the membrane transporter undergoes global conformational changes, alternating between inward-facing (IF), outward-facing (OF), and occluded (OC) states. Conformational transitions are promoted by proton and ligand binding; however, due to the absence of crystallographic models of the outward-open state, the role of H+ and ligands is still not fully understood. To provide a comprehensive picture of the POT conformational equilibrium, conventional and enhanced sampling molecular dynamics simulations of PepTst in the presence or absence of ligand and protonation were performed. Free-energy profiles of the conformational variability of PepTst were obtained from microseconds of adaptive biasing force (ABF) simulations. Our results reveal that both proton and ligand significantly change the conformational free-energy landscape. In the absence of ligand and protonation, only transitions involving IF and OC states are allowed. After protonation of the residue Glu300, the wider free-energy well for Glu300 protonated PepTst indicates a greater conformational variability relative to the apo system, and OF conformations became accessible. For the Glu300 protonated Holo-PepTst, the presence of a second free-energy minimum suggests that OF conformations are not only accessible, but also stable. The differences in the free-energy profiles demonstrate that transitions toward outward-facing conformation occur only after protonation, which is likely the first step in the mechanism of peptide transport. Our extensive ABF simulations provide a fully atomic description of all states of the transport process, offering a model for the alternating access mechanism and how protonation and ligand control the conformational changes.


Assuntos
Simulação de Dinâmica Molecular , Oligopeptídeos/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Ligantes , Oligopeptídeos/química , Conformação Proteica , Transporte Proteico , Prótons , Termodinâmica
18.
Chem Phys Lipids ; 222: 51-58, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31102583

RESUMO

Lipodisq™ nanoparticles have been used to extract surface lipids from the cuticle of two strains (wild type, N2 and the bacteria-resistant strain, agmo-1) of the C. elegans nematode without loss of viability. The extracted lipids were characterized by thin layer chromatography and MALDI-TOF-MS. The lipid profiles differed between the two strains. The extracted lipids from the bacteria-resistant strain, agmo-1, contained ether-linked (O-alkyl chain) lipids, in contrast to the wild-type strain which contained exclusively ester- linked (O-acyl) lipids. This observation is consistent with the loss of a functional alkylglycerol monooxygenase (AGMO) in the bacterial resistant strain agmo-1. The presence and abundance of other lipid species also differs between the wild-type N2 and agmo-1 nematodes, suggesting that the agmo-1 mutant strain attempts to compensate for the increase in ether-linked lipids by modulating other lipid-synthesis pathways. Together these differences not only affect the fragility of the cuticle and the buoyancy of the worm in aqueous buffer, but also interactions with surface-adhering bacteria. The much greater chemical stability of O-alkyl, non-hydrolysable linked lipids compared with hydrolysable O-acyl linked lipids, may be the origin of the resistance of the agmo-1 strain to bacterial infection, providing a more resilient cuticle for the nematode. Additionally, we show that lipid extraction with a polymer of styrene and maleic acid (SMA) provides a viable route to lipidomics studies with minimal perturbation of the organism.


Assuntos
Infecções Bacterianas/metabolismo , Caenorhabditis elegans/metabolismo , Eucariotos/metabolismo , Lipidômica , Lipídeos/química , Animais
19.
Chem Phys Lipids ; 221: 167-175, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30940445

RESUMO

Nanoparticles assembled with poly(styrene-maleic acid) copolymers, identified in the literature as Lipodisq, SMALPs or Native Nanodisc, are routinely used as membrane mimetics to stabilise protein structures in their native conformation. To date, transmembrane proteins of varying complexity (up to 8 beta strands or 48 alpha helices) and of a range of molecular weights (from 27 kDa up to 500 kDa) have been incorporated into this particle system for structural and functional studies. SMA and related amphipathic polymers have become versatile components of the biochemist's tool kit for the stabilisation, extraction and structural characterization of membrane proteins by techniques including cryo-EM and X-ray crystallography. Lipodisq formation does not require the use of conventional detergents and thus avoids their associated detrimental consequences. Here the development of this technology, from its fundamental concept and design to the diverse range of experimental methodologies to which it can now be applied, will be reviewed.


Assuntos
Anidridos Maleicos/química , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Polímeros/química , Estireno/química , Tensoativos/química , Estrutura Molecular , Solubilidade
20.
Sci Rep ; 8(1): 17266, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451943

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...