Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(12): e1011067, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38109437

RESUMO

Organismal responses to temperature fluctuations include an evolutionarily conserved cytosolic chaperone machinery as well as adaptive alterations in lipid constituents of cellular membranes. Using C. elegans as a model system, we asked whether adaptable lipid homeostasis is required for survival during physiologically relevant heat stress. By systematic analyses of lipid composition in worms during and before heat stress, we found that unsaturated fatty acids are reduced in heat-stressed animals. This is accompanied by the transcriptional downregulation of fatty acid desaturase enzymes encoded by fat-1, fat-3, fat-4, fat-5, fat-6, and fat-7 genes. Conversely, overexpression of the Δ9 desaturase FAT-7, responsible for the synthesis of PUFA precursor oleic acid, and supplementation of oleic acid causes accelerated death of worms during heat stress. Interestingly, heat stress causes permeability defects in the worm's cuticle. We show that fat-7 expression is reduced in the permeability defective collagen (PDC) mutant, dpy-10, known to have enhanced heat stress resistance (HSR). Further, we show that the HSR of dpy-10 animals is dependent on the upregulation of PTR-23, a patched-like receptor in the epidermis, and that PTR-23 downregulates the expression of fat-7. Consequently, abrogation of ptr-23 in wild type animals affects its survival during heat stress. This study provides evidence for the negative regulation of fatty acid desaturase expression in the soma of C. elegans via the non-canonical role of a patched receptor signaling component. Taken together, this constitutes a skin-gut axis for the regulation of lipid desaturation to promote the survival of worms during heat stress.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Estearoil-CoA Dessaturase/genética , Homeostase , Resposta ao Choque Térmico/genética , Ácidos Oleicos
2.
ACS Cent Sci ; 9(5): 870-882, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37252355

RESUMO

Even after decades of research, the mechanism of neurodegeneration remains understudied, hindering the discovery of effective treatments for neurodegenerative diseases. Recent reports suggest that ferroptosis could be a novel therapeutic target for neurodegenerative diseases. While polyunsaturated fatty acid (PUFA) plays an important role in neurodegeneration and ferroptosis, how PUFAs may trigger these processes remains largely unknown. PUFA metabolites from cytochrome P450 and epoxide hydrolase metabolic pathways may modulate neurodegeneration. Here, we test the hypothesis that specific PUFAs regulate neurodegeneration through the action of their downstream metabolites by affecting ferroptosis. We find that the PUFA dihomo-γ-linolenic acid (DGLA) specifically induces ferroptosis-mediated neurodegeneration in dopaminergic neurons. Using synthetic chemical probes, targeted metabolomics, and genetic mutants, we show that DGLA triggers neurodegeneration upon conversion to dihydroxyeicosadienoic acid through the action of CYP-EH (CYP, cytochrome P450; EH, epoxide hydrolase), representing a new class of lipid metabolites that induce neurodegeneration via ferroptosis.

3.
Cells ; 12(5)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36899940

RESUMO

Ferroptosis is a form of regulated cell death that is intricately linked to cellular metabolism. In the forefront of research on ferroptosis, the peroxidation of polyunsaturated fatty acids has emerged as a key driver of oxidative damage to cellular membranes leading to cell death. Here, we review the involvement of polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), lipid remodeling enzymes and lipid peroxidation in ferroptosis, highlighting studies revealing how using the multicellular model organism Caenorhabditis elegans contributes to the understanding of the roles of specific lipids and lipid mediators in ferroptosis.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Ácidos Graxos Insaturados , Ácidos Graxos Monoinsaturados , Estresse Oxidativo
4.
bioRxiv ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36711920

RESUMO

Even after decades of research, the mechanism of neurodegeneration remains understudied, hindering the discovery of effective treatments for neurodegenerative diseases. Recent reports suggest that ferroptosis could be a novel therapeutic target for neurodegenerative diseases. While polyunsaturated fatty acid (PUFA) plays an important role in neurodegeneration and ferroptosis, how PUFAs may trigger these processes remains largely unknown. PUFA metabolites from cytochrome P450 and epoxide hydrolase metabolic pathways may modulate neurodegeneration. Here, we test the hypothesis that specific PUFAs regulate neurodegeneration through the action of their downstream metabolites by affecting ferroptosis. We find that the PUFA, dihomo gamma linolenic acid (DGLA), specifically induces ferroptosis-mediated neurodegeneration in dopaminergic neurons. Using synthetic chemical probes, targeted metabolomics, and genetic mutants, we show that DGLA triggers neurodegeneration upon conversion to dihydroxyeicosadienoic acid through the action of CYP-EH, representing a new class of lipid metabolite that induces neurodegeneration via ferroptosis.

5.
PLoS Genet ; 18(9): e1010436, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36178986

RESUMO

Ferroptosis is an iron-dependent form of regulated cell death associated with uncontrolled membrane lipid peroxidation and destruction. Previously, we showed that dietary dihomo-gamma-linolenic acid (DGLA; 20: 3(n-6)) triggers ferroptosis in the germ cells of the model organism, Caenorhabditis elegans. We also demonstrated that ether lipid-deficient mutant strains are sensitive to DGLA-induced ferroptosis, suggesting a protective role for ether lipids. The vinyl ether bond unique to plasmalogen lipids has been hypothesized to function as an antioxidant, but this has not been tested in animal models. In this study, we used C. elegans mutants to test the hypothesis that the vinyl ether bond in plasmalogens acts as an antioxidant to protect against germ cell ferroptosis as well as to protect from whole-body tert-butyl hydroperoxide (TBHP)-induced oxidative stress. We found no role for plasmalogens in either process. Instead, we demonstrate that ether lipid-deficiency disrupts lipid homeostasis in C. elegans, leading to altered ratios of saturated and monounsaturated fatty acid (MUFA) content in cellular membranes. We demonstrate that ferroptosis sensitivity in both wild type and ether-lipid deficient mutants can be rescued in several ways that change the relative abundance of saturated fats, MUFAs and specific polyunsaturated fatty acids (PUFAs). Specifically, we reduced ferroptosis sensitivity by (1) using mutant strains unable to synthesize DGLA, (2) using a strain carrying a gain-of-function mutation in the transcriptional mediator MDT-15, or (3) by dietary supplementation of MUFAs. Furthermore, our studies reveal important differences in how dietary lipids influence germ cell ferroptosis versus whole-body peroxide-induced oxidative stress. These studies highlight a potentially beneficial role for endogenous and dietary MUFAs in the prevention of ferroptosis.


Assuntos
Ferroptose , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Antioxidantes/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Éter/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados , Ferroptose/genética , Homeostase/genética , Ferro/metabolismo , Plasmalogênios/metabolismo , Compostos de Vinila , terc-Butil Hidroperóxido/metabolismo
6.
Development ; 149(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35900100

RESUMO

Adults contracting Zika virus (ZIKV) typically exhibit mild symptoms, yet ZIKV infection of pregnant individuals can cause miscarriage or birth defects in their offspring. Many studies have focused on maternal-to-fetal ZIKV transmission via blood and placenta. Notably, however, ZIKV is also transmitted sexually, raising the possibility that ZIKV could infect the embryo shortly after fertilization, long before the placenta is established. Here, we evaluate the consequences of ZIKV infection in mouse embryos during the first few days of embryogenesis. We show that divergent strains of ZIKV can infect the fetal lineage and can cause developmental arrest, raising concern for the developmental consequences of sexual ZIKV transmission. This article has an associated 'The people behind the papers' interview.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Suscetibilidade a Doenças , Feminino , Fertilização , Feto , Humanos , Transmissão Vertical de Doenças Infecciosas , Camundongos , Gravidez
7.
Methods Mol Biol ; 2468: 271-281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320570

RESUMO

Lipids are major components of cellular membranes and energy stores. Lipids contribute vital structural, energetic, and signaling functions. We have optimized methods to extract and analyze lipids from the nematode Caenorhabditis elegans based on standard methods. Here we describe a method to extract total lipids from C. elegans larvae, adults, or embryos. We describe a thin-layer chromatography method to separate major lipid classes and a gas chromatography method to analyze fatty acid composition from lipid extracts, lipid fractions, or directly from nematode larvae, adults, or embryos.


Assuntos
Caenorhabditis elegans , Ácidos Graxos , Animais , Membrana Celular/química , Cromatografia Gasosa/métodos , Cromatografia em Camada Fina/métodos , Ácidos Graxos/análise
8.
J Pediatric Infect Dis Soc ; 10(10): 967-969, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34309674

RESUMO

Pediatric saliva specimen demonstrated high sensitivity (93%) and specificity (96.2%) compared to paired nasopharyngeal swabs (NPS) by Aptima SARS-CoV-2 Assay (Aptima). Viral loads were comparable in both specimen types. Saliva is a safe, noninvasive, and acceptable alternative specimen for SARS-CoV-2 detection in children.


Assuntos
COVID-19 , SARS-CoV-2 , Criança , Humanos , Técnicas de Diagnóstico Molecular , Nasofaringe , Saliva , Manejo de Espécimes
9.
Nat Chem Biol ; 17(6): 665-674, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33686292

RESUMO

Cell death can be executed by regulated apoptotic and nonapoptotic pathways, including the iron-dependent process of ferroptosis. Small molecules are essential tools for studying the regulation of cell death. Using time-lapse imaging and a library of 1,833 bioactive compounds, we assembled a large compendium of kinetic cell death modulatory profiles for inducers of apoptosis and ferroptosis. From this dataset we identify dozens of ferroptosis suppressors, including numerous compounds that appear to act via cryptic off-target antioxidant or iron chelating activities. We show that the FDA-approved drug bazedoxifene acts as a potent radical trapping antioxidant inhibitor of ferroptosis both in vitro and in vivo. ATP-competitive mechanistic target of rapamycin (mTOR) inhibitors, by contrast, are on-target ferroptosis inhibitors. Further investigation revealed both mTOR-dependent and mTOR-independent mechanisms that link amino acid metabolism to ferroptosis sensitivity. These results highlight kinetic modulatory profiling as a useful tool to investigate cell death regulation.


Assuntos
Ferroptose/fisiologia , Aminoácidos/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sistema Livre de Células , Humanos , Indóis/farmacologia , Quelantes de Ferro/farmacologia , Cinética , Bibliotecas de Moléculas Pequenas , Serina-Treonina Quinases TOR/antagonistas & inibidores
10.
Metabolites ; 11(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672292

RESUMO

Caenorhabditis elegans is well-known as the model organism used to elucidate the genetic pathways underlying the first described form of regulated cell death, apoptosis. Since then, C. elegans investigations have contributed to the further understanding of lipids in apoptosis, especially the roles of phosphatidylserines and phosphatidylinositols. More recently, studies in C. elegans have shown that dietary polyunsaturated fatty acids can induce the non-apoptotic, iron-dependent form of cell death, ferroptosis. In this review, we examine the roles of various lipids in specific aspects of regulated cell death, emphasizing recent work in C. elegans.

11.
Nature ; 587(7834): 370-371, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33067590
12.
Nat Commun ; 11(1): 4865, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978396

RESUMO

The metabolic state of an organism instructs gene expression modalities, leading to changes in complex life history traits, such as longevity. Dietary restriction (DR), which positively affects health and life span across species, leads to metabolic reprogramming that enhances utilisation of fatty acids for energy generation. One direct consequence of this metabolic shift is the upregulation of cytoprotective (CyTP) genes categorized in the Gene Ontology (GO) term of "Xenobiotic Detoxification Program" (XDP). How an organism senses metabolic changes during nutritional stress to alter gene expression programs is less known. Here, using a genetic model of DR, we show that the levels of polyunsaturated fatty acids (PUFAs), especially linoleic acid (LA) and eicosapentaenoic acid (EPA), are increased following DR and these PUFAs are able to activate the CyTP genes. This activation of CyTP genes is mediated by the conserved p38 mitogen-activated protein kinase (p38-MAPK) pathway. Consequently, genes of the PUFA biosynthesis and p38-MAPK pathway are required for multiple paradigms of DR-mediated longevity, suggesting conservation of mechanism. Thus, our study shows that PUFAs and p38-MAPK pathway function downstream of DR to help communicate the metabolic state of an organism to regulate expression of CyTP genes, ensuring extended life span.


Assuntos
Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Fenômenos Bioquímicos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácido Eicosapentaenoico/análogos & derivados , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Ácido Linoleico/metabolismo , Longevidade , Redes e Vias Metabólicas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
13.
G3 (Bethesda) ; 10(11): 4167-4176, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32943454

RESUMO

RNA interference is a powerful tool for dissecting gene function. In Caenorhabditis elegans, ingestion of double stranded RNA causes strong, systemic knockdown of target genes. Further insight into gene function can be revealed by tissue-specific RNAi techniques. Currently available tissue-specific C. elegans strains rely on rescue of RNAi function in a desired tissue or cell in an otherwise RNAi deficient genetic background. We attempted to assess the contribution of specific tissues to polyunsaturated fatty acid (PUFA) synthesis using currently available tissue-specific RNAi strains. We discovered that rde-1(ne219), a commonly used RNAi-resistant mutant strain, retains considerable RNAi capacity against RNAi directed at PUFA synthesis genes. By measuring changes in the fatty acid products of the desaturase enzymes that synthesize PUFAs, we found that the before mentioned strain, rde-1(ne219) and the reported germline only RNAi strain, rrf-1(pk1417) are not appropriate genetic backgrounds for tissue-specific RNAi experiments. However, the knockout mutant rde-1(ne300) was strongly resistant to dsRNA induced RNAi, and thus is more appropriate for construction of a robust tissue-specific RNAi strains. Using newly constructed strains in the rde-1(null) background, we found considerable desaturase activity in intestinal, epidermal, and germline tissues, but not in muscle. The RNAi-specific strains reported in this study will be useful tools for C. elegans researchers studying a variety of biological processes.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Interferência de RNA , RNA de Cadeia Dupla , RNA Polimerase Dependente de RNA
14.
Dev Cell ; 54(4): 447-454.e4, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32652074

RESUMO

Dietary lipids impact development, homeostasis, and disease, but links between specific dietary fats and cell fates are poorly understood. Ferroptosis is an iron-dependent form of nonapoptotic cell death associated with oxidized polyunsaturated phospholipids. Here, we show that dietary ingestion of the polyunsaturated fatty acid (PUFA) dihomogamma-linolenic acid (DGLA; 20:3n-6) can trigger germ-cell ferroptosis and sterility in the nematode Caenorhabditis elegans. Exogenous DGLA is also sufficient to induce ferroptosis in human cells, pinpointing this omega-6 PUFA as a conserved metabolic instigator of this lethal process. In both C. elegans and human cancer cells, ether-lipid synthesis protects against ferroptosis. These results establish C. elegans as a powerful animal model to study the induction and modulation of ferroptosis by dietary fats and indicate that endogenous ether lipids act to prevent this nonapoptotic cell fate.


Assuntos
Ácido 8,11,14-Eicosatrienoico/farmacologia , Gorduras na Dieta/metabolismo , Ferroptose/efeitos dos fármacos , Lipídeos/farmacologia , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Gorduras na Dieta/farmacologia , Células Germinativas/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Ferro/metabolismo , Lipídeos/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fosfolipídeos/farmacologia
15.
Aging Cell ; 19(6): e13160, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32432390

RESUMO

The G protein-coupled receptor (GPCR) encoding family of genes constitutes more than 6% of genes in Caenorhabditis elegans genome. GPCRs control behavior, innate immunity, chemotaxis, and food search behavior. Here, we show that C. elegans longevity is regulated by a chemosensory GPCR STR-2, expressed in AWC and ASI amphid sensory neurons. STR-2 function is required at temperatures of 20°C and higher on standard Escherichia coli OP50 diet. Under these conditions, this neuronal receptor also controls health span parameters and lipid droplet (LD) homeostasis in the intestine. We show that STR-2 regulates expression of delta-9 desaturases, fat-5, fat-6 and fat-7, and of diacylglycerol acyltransferase dgat-2. Rescue of the STR-2 function in either AWC and ASI, or ASI sensory neurons alone, restores expression of fat-5, dgat-2 and restores LD stores and longevity. Rescue of stored fat levels of GPCR mutant animals to wild-type levels, with low concentration of glucose, rescues its lifespan phenotype. In all, we show that neuronal STR-2 GPCR facilitates control of neutral lipid levels and longevity in C. elegans.


Assuntos
Caenorhabditis elegans/metabolismo , Longevidade/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Animais , Metabolismo dos Lipídeos
16.
Development ; 146(17)2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31444221

RESUMO

In mice, pluripotent cells are thought to derive from cells buried inside the embryo around the 16-cell stage. Sox2 is the only pluripotency gene known to be expressed specifically within inside cells at this stage. To understand how pluripotency is established, we therefore investigated the mechanisms regulating the initial activation of Sox2 expression. Surprisingly, Sox2 expression initiated normally in the absence of both Nanog and Oct4 (Pou5f1), highlighting differences between embryo and stem cell models of pluripotency. However, we observed precocious ectopic expression of Sox2 prior to the 16-cell stage in the absence of Yap1, Wwtr1 and Tead4 Interestingly, the repression of premature Sox2 expression was sensitive to LATS kinase activity, even though LATS proteins normally do not limit activity of TEAD4, YAP1 and WWTR1 during these early stages. Finally, we present evidence for direct transcriptional repression of Sox2 by YAP1, WWTR1 and TEAD4. Taken together, our observations reveal that, while embryos are initially competent to express Sox2 as early as the four-cell stage, transcriptional repression prevents the premature expression of Sox2, thereby restricting the pluripotency program to the stage when inside cells are first created.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Musculares/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Blastocisto/citologia , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Expressão Ectópica do Gene , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos/embriologia , Camundongos Transgênicos , Proteínas Musculares/genética , Células-Tronco Pluripotentes/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição de Domínio TEA , Transativadores/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
17.
J Biol Chem ; 293(2): 610-622, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29158261

RESUMO

Biotin is an essential cofactor for multiple metabolic reactions catalyzed by carboxylases. Biotin is covalently linked to apoproteins by holocarboxylase synthetase (HCS). Accordingly, some mutations in HCS cause holocarboxylase deficiency, a rare metabolic disorder that can be life-threatening if left untreated. However, the long-term effects of HCS deficiency are poorly understood. Here, we report our investigations of bpl-1, which encodes the Caenorhabditis elegans ortholog of HCS. We found that mutations in the biotin-binding region of bpl-1 are maternal-effect lethal and cause defects in embryonic polarity establishment, meiosis, and the integrity of the eggshell permeability barrier. We confirmed that BPL-1 biotinylates four carboxylase enzymes, and we demonstrate that BPL-1 is required for efficient de novo fatty acid biosynthesis. We also show that the lack of larval growth defects as well as nearly normal fatty acid composition in young adult worms is due to sufficient fatty acid precursors provided by dietary bacteria. However, BPL-1 disruption strongly decreased levels of polyunsaturated fatty acids in embryos produced by bpl-1 mutant hermaphrodites, revealing a critical role for BPL-1 in lipid biosynthesis during embryogenesis and demonstrating that dietary fatty acids and lipid precursors are not adequate to support early embryogenesis in the absence of BPL-1. Our findings highlight that studying BPL-1 function in C. elegans could help dissect the roles of this important metabolic enzyme under different environmental and dietary conditions.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Animais , Biotina/metabolismo , Proteínas de Caenorhabditis elegans/genética , Metabolismo dos Lipídeos/fisiologia
18.
Genetics ; 207(2): 413-446, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28978773

RESUMO

Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.


Assuntos
Caenorhabditis elegans/metabolismo , Metabolismo dos Carboidratos , Metabolismo dos Lipídeos , Animais , Caenorhabditis elegans/genética
19.
Pediatr Emerg Care ; 33(8): 548-552, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28777773

RESUMO

OBJECTIVE: We compared performance characteristics of 7 weight estimation methods examining predictive performance and human factors errors. METHODS: This was a prospective study of 80 emergency care providers (raters) and 80 children aged 2 months to 16 years. Raters estimated weights in 5 children with the following 7 strategies: visual estimation, Advanced Pediatric Life Support, Luscombe and Owens, Broselow tape, devised weight estimation method, 2D Mercy TAPE (2DT), and 3D Mercy TAPE (3DT). Quantitative errors were determined by checking rater values against values returned with optimal method use. RESULTS: Four hundred rater-child pairings generated 2800 weight estimates. For all methods, rater-estimated weights were less accurate than weights derived by optimal application. Skill-based, perception, and judgment/decision error were observed. For visual estimation, weights were underestimated in most children. For Advanced Pediatric Life Support/Luscombe and Owens, order of operations markedly impacted errors with 23% of calculations requiring addition first performed incorrectly versus 9% of calculations requiring multiplication first. For Broselow tape, only 63% of cases were eligible for estimation with this device, yet raters assigned a weight in 96% of cases. For Devised Weight Estimation Method, 96% of overweight and 48% of obese children were classified as slim or average. For 2DT/3DT, the 2DT was prone to more errors most commonly use of the wrong side of the device (24%). The impact of rater characteristics on error was most pronounced for methods requiring calculation. CONCLUSIONS: Skill-based, perception, or judgment errors were observed in more than 1 of 20 cases. No singular strategy was used with 100% accuracy.


Assuntos
Peso Corporal , Precisão da Medição Dimensional , Tratamento de Emergência/métodos , Adolescente , Adulto , Fatores Etários , Antropometria/métodos , Criança , Pré-Escolar , Competência Clínica , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
20.
J Clin Med ; 5(2)2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26848697

RESUMO

The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...