Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(4): e0135622, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35726914

RESUMO

Plasmids that encode the same replication machinery are generally unable to coexist in the same bacterial cell. However, Clostridium perfringens strains often carry multiple conjugative toxin or antibiotic resistance plasmids that are closely related and encode similar Rep proteins. In many bacteria, plasmid partitioning upon cell division involves a ParMRC system; in C. perfringens plasmids, there are approximately 10 different ParMRC families, with significant differences in amino acid sequences between each ParM family (15% to 54% identity). Since plasmids carrying genes belonging to the same ParMRC family are not observed in the same strain, these families appear to represent the basis for plasmid compatibility in C. perfringens. To understand this process, we examined the key recognition steps between ParR DNA-binding proteins and their parC binding sites. The ParR proteins bound to sequences within a parC site from the same ParMRC family but could not interact with a parC site from a different ParMRC family. These data provide evidence that compatibility of the conjugative toxin plasmids of C. perfringens is mediated by their parMRC-like partitioning systems. This process provides a selective advantage by enabling the host bacterium to maintain separate plasmids that encode toxins that are specific for different host targets. IMPORTANCE Toxins produced by the Gram-positive pathogen Clostridium perfringens are primarily encoded by genes found on different conjugative plasmids. These plasmids encode highly similar replication proteins and therefore should be incompatible, but they are often found to coexist within the same isolate. In this study, we showed that a series of phylogenetically related ParMRC plasmid partitioning systems, structures that are normally responsible for ensuring that plasmids segregate correctly at cell division, dictate which toxin plasmid combinations can coexist within the same bacterial cell. We dissected the recognition steps between the DNA-binding ParMRC component, ParR, and the plasmid-derived centromere, parC. Our data suggested a mechanism by which plasmids encoding ParMRC systems from the same family are incompatible, whereas plasmids encoding ParMRC systems from distinct families are compatible. This work provides insight into how these cells can maintain multiple highly similar toxin plasmids, which is a critical first step in understanding how to limit the disease-causing potential of C. perfringens.


Assuntos
Bactérias , Clostridium perfringens , Bactérias/genética , Clostridium perfringens/genética , Resistência Microbiana a Medicamentos , Humanos , Plasmídeos/genética
2.
Plasmid ; 113: 102516, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32526229

RESUMO

The spore-forming, anaerobic Gram positive pathogen Clostridium perfringens encodes many of its disease-causing toxins on closely related conjugative plasmids. Studies of the tetracycline resistance plasmid pCW3 have identified many of the genes involved in conjugative transfer, which are located in the tcp conjugation locus. Upstream of this locus is an uncharacterised region (the cnaC region) that is highly conserved. This study examined the importance in pCW3 conjugation of several highly conserved proteins encoded in the cnaC region. Conjugative mating studies suggested that the SrtD, TcpN and Dam proteins were required for efficient pCW3 transfer between C. perfringens cells from the same strain background. The requirement of these proteins for conjugation was amplified in matings between C. perfringens cells of different strain backgrounds. Additionally, the putative collagen adhesin protein, CnaC, was only required for the optimal transfer of pCW3 between cells of different strain backgrounds. Based on these studies we postulate that CnaC, SrtD, TcpN and Dam are involved in enhancing the transfer frequency of pCW3. These studies have led to a significant expansion of the tcp conjugation locus, which now encompasses a 19 kb region.


Assuntos
Clostridium perfringens , Conjugação Genética , Clostridium perfringens/genética , Plasmídeos/genética , Resistência a Tetraciclina
3.
mBio ; 11(5)2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887735

RESUMO

In December of 2019, a novel coronavirus, SARS-CoV-2, emerged in the city of Wuhan, China, causing severe morbidity and mortality. Since then, the virus has swept across the globe, causing millions of confirmed infections and hundreds of thousands of deaths. To better understand the nature of the pandemic and the introduction and spread of the virus in Arizona, we sequenced viral genomes from clinical samples tested at the TGen North Clinical Laboratory, the Arizona Department of Health Services, and those collected as part of community surveillance projects at Arizona State University and the University of Arizona. Phylogenetic analysis of 84 genomes from across Arizona revealed a minimum of 11 distinct introductions inferred to have occurred during February and March. We show that >80% of our sequences descend from strains that were initially circulating widely in Europe but have since dominated the outbreak in the United States. In addition, we show that the first reported case of community transmission in Arizona descended from the Washington state outbreak that was discovered in late February. Notably, none of the observed transmission clusters are epidemiologically linked to the original travel-related case in the state, suggesting successful early isolation and quarantine. Finally, we use molecular clock analyses to demonstrate a lack of identifiable, widespread cryptic transmission in Arizona prior to the middle of February 2020.IMPORTANCE As the COVID-19 pandemic swept across the United States, there was great differential impact on local and regional communities. One of the earliest and hardest hit regions was in New York, while at the same time Arizona (for example) had low incidence. That situation has changed dramatically, with Arizona now having the highest rate of disease increase in the country. Understanding the roots of the pandemic during the initial months is essential as the pandemic continues and reaches new heights. Genomic analysis and phylogenetic modeling of SARS-COV-2 in Arizona can help to reconstruct population composition and predict the earliest undetected introductions. This foundational work represents the basis for future analysis and understanding as the pandemic continues.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Arizona/epidemiologia , Betacoronavirus/classificação , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/virologia , Evolução Molecular , Genoma Viral/genética , Humanos , Incidência , Mutação , Pandemias , Filogenia , Pneumonia Viral/virologia , SARS-CoV-2 , Proteínas Virais/genética
4.
Proc Natl Acad Sci U S A ; 117(22): 12222-12229, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32430331

RESUMO

With very little direct biological data of HIV-1 from before the 1980s, far-reaching evolutionary and epidemiological inferences regarding the long prediscovery phase of this pandemic are based on extrapolations by phylodynamic models of HIV-1 genomic sequences gathered mostly over recent decades. Here, using a very sensitive multiplex RT-PCR assay, we screened 1,645 formalin-fixed paraffin-embedded tissue specimens collected for pathology diagnostics in Central Africa between 1958 and 1966. We report the near-complete viral genome in one HIV-1 positive specimen from Kinshasa, Democratic Republic of Congo (DRC), from 1966 ("DRC66")-a nonrecombinant sister lineage to subtype C that constitutes the oldest HIV-1 near full-length genome recovered to date. Root-to-tip plots showed the DRC66 sequence is not an outlier as would be expected if dating estimates from more recent genomes were systematically biased; and inclusion of the DRC66 sequence in tip-dated BEAST analyses did not significantly alter root and internal node age estimates based on post-1978 HIV-1 sequences. There was larger variation in divergence time estimates among datasets that were subsamples of the available HIV-1 genomes from 1978 to 2014, showing the inherent phylogenetic stochasticity across subsets of the real HIV-1 diversity. Our phylogenetic analyses date the origin of the pandemic lineage of HIV-1 to a time period around the turn of the 20th century (1881 to 1918). In conclusion, this unique archival HIV-1 sequence provides direct genomic insight into HIV-1 in 1960s DRC, and, as an ancient-DNA calibrator, it validates our understanding of HIV-1 evolutionary history.


Assuntos
Linhagem da Célula/genética , Evolução Molecular , Variação Genética , Genoma Viral , Infecções por HIV/genética , HIV-1/genética , Inclusão em Parafina/métodos , Adulto , República Democrática do Congo , Infecções por HIV/virologia , Humanos , Masculino , Filogenia , Análise de Sequência de DNA , Fatores de Tempo
5.
Microbiol Spectr ; 7(3)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31111816

RESUMO

The clostridia cause a spectrum of diseases in humans and animals ranging from life-threatening tetanus and botulism, uterine infections, histotoxic infections and enteric diseases, including antibiotic-associated diarrhea, and food poisoning. The symptoms of all these diseases are the result of potent protein toxins produced by these organisms. These toxins are diverse, ranging from a multitude of pore-forming toxins to phospholipases, metalloproteases, ADP-ribosyltransferases and large glycosyltransferases. The location of the toxin genes is the unifying theme of this review because with one or two exceptions they are all located on plasmids or on bacteriophage that replicate using a plasmid-like intermediate. Some of these plasmids are distantly related whilst others share little or no similarity. Many of these toxin plasmids have been shown to be conjugative. The mobile nature of these toxin genes gives a ready explanation of how clostridial toxin genes have been so widely disseminated both within the clostridial genera as well as in the wider bacterial community.


Assuntos
Toxinas Bacterianas/genética , Clostridium/genética , Plasmídeos , Fatores de Virulência/genética , Toxinas Bacterianas/classificação , Toxinas Botulínicas/genética , Clostridioides difficile/genética , Clostridium/classificação , Clostridium/metabolismo , Clostridium botulinum/classificação , Clostridium botulinum/genética , Clostridium perfringens/genética , Clostridium sordellii/genética , Clostridium tetani/genética , Sequências Repetitivas Dispersas , Virulência/genética
6.
Plasmid ; 102: 37-45, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30790588

RESUMO

Conjugative transfer is a major contributor to the dissemination of antibiotic resistance and virulence genes in the human and animal pathogen, Clostridium perfringens. The C. perfringens plasmid pCW3 is the archetype of an extensive family of highly related conjugative toxin and antibiotic resistance plasmids found in this bacterium. These plasmids were thought to constitute the only conjugative plasmid family in C. perfringens. Recently, another series of C. perfringens plasmids, the pCP13-like family, have been shown to harbour important toxin genes, including genes that encode the novel binary clostridial enterotoxin, BEC. Based on early bioinformatics analysis this plasmid family was thought to be non-conjugative. Here we demonstrate that pCP13 is in fact conjugative, transfers at high frequency and that the newly defined Pcp conjugation locus encodes putative homologues of a type 4 secretion system (T4SS), one of which, PcpB4, was shown to be essential for transfer. The T4SS of pCP13 also appears to be evolutionarily related to conjugative toxin plasmids from other clostridia-like species, including Paeniclostridium (formerly Clostridium) sordellii, Clostridioides (formerly Clostridium) difficile and Clostridium botulinum. Therefore, it is clear that there are two distinct families of conjugative plasmids in C. perfringens: the pCW3 family and the pCP13 family. This study has significant implications for our understanding of the movement of toxin genes both within C. perfringens, but also potentially to other pathogenic clostridia.


Assuntos
Toxinas Bacterianas/genética , Clostridium perfringens/genética , Conjugação Genética , Plasmídeos/genética , Sequência de Bases , Sequência Conservada/genética , Loci Gênicos , Modelos Genéticos , Mutação/genética , Filogenia
7.
mBio ; 9(1)2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339424

RESUMO

A major virulence factor in Clostridium sordellii-mediated infection is the toxin TcsL, which is encoded within a region of the genome called the pathogenicity locus (PaLoc). C. sordellii isolates carry the PaLoc on the pCS1 family of plasmids, of which there are four characterized members. Here, we determined the potential mobility of pCS1 plasmids and characterized a fifth unique pCS1 member. Using a derivative of the pCS1-1 plasmid from strain ATCC 9714 which had been marked with the ermB erythromycin resistance gene, conjugative transfer into a recipient C. sordellii isolate, R28058, was demonstrated. Bioinformatic analysis of pCS1-1 identified a novel conjugation gene cluster defined as the C. sordellii transfer (cst) locus. Interruption of genes within the cst locus resulted in loss of pCS1-1 transfer, which was restored upon complementation in trans These studies provided clear evidence that genes within the cst locus are essential for the conjugative transfer of pCS1-1. The cst locus is present on all pCS1 subtypes, and homologous loci were identified on toxin-encoding plasmids from Clostridium perfringens and Clostridium botulinum and also carried within genomes of Clostridium difficile isolates, indicating that it is a widespread clostridial conjugation locus. The results of this study have broad implications for the dissemination of toxin genes and, potentially, antibiotic resistance genes among members of a diverse range of clostridial pathogens, providing these microorganisms with a survival advantage within the infected host.IMPORTANCEC. sordellii is a bacterial pathogen that causes severe infections in humans and animals, with high mortality rates. While the pathogenesis of C. sordellii infections is not well understood, it is known that the toxin TcsL is an important virulence factor. Here, we have shown the ability of a plasmid carrying the tcsL gene to undergo conjugative transfer between distantly related strains of C. sordellii, which has far-reaching implications for the ability of C. sordellii to acquire the capacity to cause disease. Plasmids that carry tcsL encode a previously uncharacterized conjugation locus, and individual genes within this locus were shown to be required for conjugative transfer. Furthermore, homologues on toxin plasmids from other clostridial species were identified, indicating that this region represents a novel clostridial conjugation locus. The results of this study have broad implications for the dissemination of virulence genes among members of a diverse range of clostridial pathogens.


Assuntos
Clostridium sordellii/genética , Conjugação Genética , Transferência Genética Horizontal , Loci Gênicos , Plasmídeos , Biologia Computacional , Genes Bacterianos , Família Multigênica
8.
Plasmid ; 91: 68-75, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28390955

RESUMO

Clostridium perfringens produces an extensive repertoire of toxins and extracellular enzymes, many of which are intimately involved in the progression of disease and are encoded by genes on conjugative plasmids. In addition, many C. perfringens strains can carry up to five of these conjugative toxin or antimicrobial resistance plasmids, each of which has a similar 35kb backbone. This conserved backbone includes the tcp conjugation locus and the central control region (CCR), which encodes genes involved in plasmid regulation, replication and partitioning, including a parMRC partitioning locus. Most conjugative plasmids in C. perfringens have a conserved replication protein, raising questions as to how multiple, closely related plasmids are maintained within a single strain. Bioinformatics analysis has highlighted the presence of at least 10 different parMRC partitioning system families (parMRCA-J) in these plasmids, with differences in amino acid sequence identity between each ParM family ranging from 15% to 54%. No two plasmids that encode genes belonging to the same partitioning family have been observed in a single strain, suggesting that these families represent the basis for plasmid incompatibility. In an attempt to validate the proposed parMRC incompatibility groups, genetically marked C. perfringens plasmids encoding identical parMRCC or parMRCD homologues or different combinations of parMRCA, parMRCC and parMRCD family homologues were introduced into a single strain via conjugation. The stability of each plasmid was determined using an incompatibility assay in which the plasmid profile of each strain was monitored over the course of two days in the absence of direct selection. The results showed that plasmids with identical parMRCC or parMRCD homologues were incompatible and could not coexist in the absence of external selection. By contrast, plasmids that encoded different parMRC homologues were compatible and could coexist in the same cell in the absence of selection, with the exception of strains housing parMRCC and parMRCD combinations, which showed a minor incompatibility phenotype. In conclusion, we have provided the first direct evidence of plasmid incompatibility in Clostridium spp. and have shown experimentally that the compatibility of conjugative C. perfringens plasmids correlates with the presence of parMRC-like partitioning systems of different phylogenetic subfamilies.


Assuntos
Actinas/genética , Proteínas de Bactérias/genética , Clostridium perfringens/genética , Conjugação Genética , DNA Topoisomerase IV/genética , Regulação Bacteriana da Expressão Gênica , Plasmídeos/química , Proteínas Repressoras/genética , Actinas/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Clostridium perfringens/efeitos dos fármacos , Clostridium perfringens/metabolismo , Replicação do DNA , DNA Topoisomerase IV/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Resistência Microbiana a Medicamentos/genética , Loci Gênicos , Plasmídeos/metabolismo , Replicon , Proteínas Repressoras/metabolismo
9.
Nature ; 539(7627): 98-101, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27783600

RESUMO

The emergence of HIV-1 group M subtype B in North American men who have sex with men was a key turning point in the HIV/AIDS pandemic. Phylogenetic studies have suggested cryptic subtype B circulation in the United States (US) throughout the 1970s and an even older presence in the Caribbean. However, these temporal and geographical inferences, based upon partial HIV-1 genomes that postdate the recognition of AIDS in 1981, remain contentious and the earliest movements of the virus within the US are unknown. We serologically screened >2,000 1970s serum samples and developed a highly sensitive approach for recovering viral RNA from degraded archival samples. Here, we report eight coding-complete genomes from US serum samples from 1978-1979-eight of the nine oldest HIV-1 group M genomes to date. This early, full-genome 'snapshot' reveals that the US HIV-1 epidemic exhibited extensive genetic diversity in the 1970s but also provides strong evidence for its emergence from a pre-existing Caribbean epidemic. Bayesian phylogenetic analyses estimate the jump to the US at around 1970 and place the ancestral US virus in New York City with 0.99 posterior probability support, strongly suggesting this was the crucial hub of early US HIV/AIDS diversification. Logistic growth coalescent models reveal epidemic doubling times of 0.86 and 1.12 years for the US and Caribbean, respectively, suggesting rapid early expansion in each location. Comparisons with more recent data reveal many of these insights to be unattainable without archival, full-genome sequences. We also recovered the HIV-1 genome from the individual known as 'Patient 0' (ref. 5) and found neither biological nor historical evidence that he was the primary case in the US or for subtype B as a whole. We discuss the genesis and persistence of this belief in the light of these evolutionary insights.


Assuntos
Síndrome da Imunodeficiência Adquirida/história , Síndrome da Imunodeficiência Adquirida/virologia , Genoma Viral/genética , HIV-1/classificação , HIV-1/genética , Síndrome da Imunodeficiência Adquirida/sangue , Síndrome da Imunodeficiência Adquirida/epidemiologia , Teorema de Bayes , HIV-1/isolamento & purificação , História do Século XX , Homossexualidade Masculina/estatística & dados numéricos , Humanos , Masculino , Cidade de Nova Iorque/epidemiologia , América do Norte/epidemiologia , RNA Viral/análise , RNA Viral/genética , RNA Viral/isolamento & purificação , Análise de Sequência de DNA , Análise Espaço-Temporal
10.
Plasmid ; 80: 90-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25929175

RESUMO

Many pathogenic strains of Clostridium perfringens carry several highly similar toxin or antibiotic resistance plasmids that have 35 to 40 kb of very closely related syntenous sequences, including regions that carry the genes encoding conjugative transfer, plasmid replication and plasmid maintenance functions. Key questions are how are these closely related plasmids stably maintained in the same cell and what is the basis for plasmid incompatibility in C. perfringens. Comparative analysis of the Rep proteins encoded by these plasmids suggested that this protein was not the basis for plasmid incompatibility since plasmids carried in a single strain often encoded an almost identical Rep protein. These plasmids all carried a similar, but not identical, parMRC plasmid partitioning locus. Phylogenetic analysis of the deduced ParM proteins revealed that these proteins could be divided into ten separate groups. Importantly, in every strain that carried more than one of these plasmids, the respective ParM proteins were from different phylogenetic groups. Similar observations were made from the analysis of phylogenetic trees of the ParR proteins and the parC loci. These findings provide evidence that the basis for plasmid incompatibility in the conjugative toxin and resistance plasmid family from C. perfringens resides in subtle differences in the parMRC plasmid partitioning loci carried by these plasmids.


Assuntos
Clostridium perfringens/genética , Plasmídeos/genética , Toxinas Bacterianas/genética , Conjugação Genética , Replicação do DNA , DNA Bacteriano/genética , Filogenia
11.
Fly (Austin) ; 7(3): 204-10, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23846301

RESUMO

Facultative heritable bacterial endosymbionts can have dramatic effects on their hosts, ranging from mutualistic to parasitic. Within-host bacterial endosymbiont density plays a critical role in maintenance of a symbiotic relationship, as it can affect levels of vertical transmission and expression of phenotypic effects, both of which influence the infection prevalence in host populations. Species of genus Drosophila are infected with Spiroplasma, whose characterized phenotypic effects range from that of a male-killing reproductive parasite to beneficial defensive endosymbiont. For many strains of Spiroplasma infecting at least 17 species of Drosophila, however, the phenotypic effects are obscure. The infection prevalence of these Spiroplasma vary within and among Drosophila species, and little is known about the within-host density dynamics of these diverse strains. To characterize the patterns of Spiroplasma density variation among Drosophila we used quantitative PCR to assess bacterial titer at various life stages of three species of Drosophila naturally-infected with two different types of Spiroplasma. For naturally infected Drosophila species we found that non-male-killing infections had consistently lower densities than the male-killing infection. The patterns of Spiroplasma titer change during aging varied among Drosophila species infected with different Spiroplasma strains. Bacterial density varied within and among populations of Drosophila, with individuals from the population with the highest prevalence of infection having the highest density. This density variation underscores the complex interaction of Spiroplasma strain and host genetic background in determining endosymbiont density.


Assuntos
Drosophila/microbiologia , Spiroplasma/patogenicidade , Animais , Infecções Bacterianas/genética , Drosophila/genética , Feminino , Masculino , Fenótipo , Especificidade da Espécie , Simbiose
12.
Insect Biochem Mol Biol ; 39(5-6): 366-71, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19328853

RESUMO

Fruit-flies of the genus Drosophila are characterized by overwhelming variation in fertilization traits such as copulatory plug formation, sperm storage organ use, and nutritional ejaculatory donation. Despite extensive research on the genetic model Drosophila melanogaster, little is known about the molecular underpinnings of these interspecific differences. This study employs a proteomic approach to pin-point candidate seminal fluid proteins in Drosophila mojavensis, a cactophilic fruit-fly that exhibits divergent reproductive biology when compared to D. melanogaster. We identify several classes of candidate seminal fluid proteins not previously documented in the D. melanogaster male ejaculate, including metabolic enzymes, nutrient transport proteins, and clotting factors. Conversely, we also define 29 SFPs that are conserved despite >40 million years of Drosophila evolution. We discuss our results in terms of universal processes in insect reproduction, as well as the specialized reproductive biology of D. mojavensis.


Assuntos
Proteínas de Drosophila/química , Drosophila/química , Proteômica , Proteínas de Plasma Seminal/química , Animais , Drosophila/classificação , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Evolução Molecular , Masculino , Dados de Sequência Molecular , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/metabolismo , Especificidade da Espécie
13.
Fly (Austin) ; 1(5): 268-73, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18836314

RESUMO

Desiccation resistance and body mass were measured in multiple populations of each of four species of Drosophila: two desert endemic species (D. nigrospiracula and D. mojavensis), and two with more widespread distributions (D. melanogaster and D. pseudoobscura). While flies from the desert species were more desiccation tolerant, there was, in certain cases, significant variation in desiccation resistance among populations of the same species. A significant difference in desiccation resistance was observed between the sexes, females were more resistant than males, but this relationship was reversed when taking into account body mass differences between the sexes. The degree of observed within-species variability demonstrates that studies focusing upon differences between species can produce different conclusions if they rely on observations for only single populations of a given species. Our data also suggest the existence of multiple mechanisms for desiccation resistance.


Assuntos
Drosophila/fisiologia , Grupos de População Animal , Animais , Tamanho Corporal , Desidratação , Clima Desértico , Drosophila/anatomia & histologia , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Feminino , Masculino , México , Zona do Canal do Panamá , Caracteres Sexuais , Sudoeste dos Estados Unidos , Especificidade da Espécie
14.
Mol Ecol ; 15(14): 4635-43, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17107489

RESUMO

Understanding the genetic basis of adaptation to novel environments remains one of the major challenges confronting evolutionary biologists. While newly developed genomic approaches hold considerable promise for addressing this overall question, the relevant tools have not often been available in the most ecologically interesting organisms. Our study organism, Drosophila mojavensis, is a cactophilic Sonoran Desert endemic utilizing four different cactus hosts across its geographical range. Its well-known ecology makes it an attractive system in which to study the evolution of gene expression during adaptation. As a cactophile, D. mojavensis oviposits in the necrotic tissues of cacti, therefore exposing larvae and even adults to the varied and toxic compounds of rotting cacti. We have developed a cDNA microarray of D. mojavensis to examine gene expression associated with cactus host use. Using a population from the Baja California population we examined gene expression differences of third instar larvae when reared in two chemically distinct cactus hosts, agria (Stenocereus gummosus, native host) vs. organpipe (Stenocereus thurberi, alternative host). We have observed differential gene expression associated with cactus host use in genes involved in metabolism and detoxification.


Assuntos
Cactaceae/parasitologia , Drosophila/genética , Drosophila/fisiologia , Genômica , Animais , Perfilação da Expressão Gênica , Genes de Insetos , Interações Hospedeiro-Parasita , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...