Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 14(4): 686-703, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32037720

RESUMO

Platinum-based compounds remain a well-established chemotherapy for cancer treatment despite their adverse effects which substantially restrict the therapeutic windows of the drugs. Both the cell type-specific toxicity and the clinical responsiveness of tumors have been associated with mechanisms that alter drug entry and export. We sought to identify pharmacological agents that promote cisplatin (CP) efficacy by augmenting the levels of drug-induced DNA lesions in malignant cells and simultaneously protecting normal tissues from accumulating such damage and from functional loss. Formation and persistence of platination products in the DNA of individual nuclei were measured in drug-exposed cell lines, in primary human tumor cells and in tissue sections using an immunocytochemical method. Using a mouse model of CP-induced toxicity, the antihistaminic drug diphenhydramine (DIPH) and two methylated derivatives decreased DNA platination in normal tissues and also ameliorated nephrotoxicity, ototoxicity, and neurotoxicity. In addition, DIPH sensitized multiple cancer cell types, particularly ovarian cancer cells, to CP by increasing intracellular uptake, DNA platination, and/or apoptosis in cell lines and in patient-derived primary tumor cells. Mechanistically, DIPH diminished transport capacity of CP efflux pumps MRP2, MRP3, and MRP5 particularly in its C2+C6 bimethylated form. Overall, we demonstrate that DIPH reduces side effects of platinum-based chemotherapy and simultaneously inhibits key mechanisms of platinum resistance. We propose that measuring DNA platination after ex vivo exposure may predict the responsiveness of individual tumors to DIPH-like modulators.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Difenidramina/farmacologia , Antagonistas dos Receptores Histamínicos H1/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/toxicidade , Adutos de DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
2.
Oncotarget ; 8(44): 76935-76948, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100359

RESUMO

BACKGROUND: Resistance to platinum-based chemotherapy is a clinical challenge in the treatment of ovarian cancer (OC) and limits survival. Therefore, innovative drugs against platinum-resistance are urgently needed. Our therapeutic concept is based on the conjugation of two chemotherapeutic compounds to a monotherapeutic pro-drug, which is taken up by cancer cells and cleaved into active cytostatic metabolites. We explore the activity of the duplex-prodrug 5-FdU-ECyd, covalently linking 2'-deoxy-5-fluorouridine (5-FdU) and 3'-C-ethynylcytidine (ECyd), on platinum-resistant OC cells. METHODS: In vitro assays and RNA-Sequencing were applied for characterization of 5-FdU-ECyd treated platinum-sensitive A2780 and isogenic platinum-resistant A2780cis and independent platinum-resistant Skov-3-IP OC cells. RESULTS: Nano molar 5-FdU-ECyd concentrations induced a rapid dose-dependent decline of cell viability in platinum-sensitive and -resistant OC cells. The effect of 5-FdU-ECyd was accompanied by the formation of DNA double strand breaks and apoptosis induction, indicated by a strong increase of pro-apoptotic molecular markers. Moreover, 5-FdU-ECyd efficiently decreased migration of platinum-resistant OC cells and inhibited clonogenic or spheroidal growth. Transcriptome analysis showed early up-regulation of CDKN1A and c-Fos in both, platinum-resistant and -sensitive cells after 5-FdU-ECyd treatment and de-regulation of distinct cellular pathways involved in cell cycle regulation, apoptosis, DNA-damage response and RNA-metabolism. Combined treatment of 5-FdU-ECyd and cisplatin did not show a synergistic cellular response, suggesting the potential use of 5-FdU-ECyd as a monotherapeutic agent. CONCLUSION: Our data provide novel mechanistic insight into the anti-tumor effect of 5-FdU-ECyd and we hypothesize that this duplex-prodrug could be a promising therapeutic option for OC patients with resistance to platinum-based chemotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...