Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
eNeuro ; 3(3)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27257628

RESUMO

The activity-regulated cytoskeleton-associated (Arc) protein controls synaptic strength by facilitating AMPA receptor (AMPAR) endocytosis. Here we demonstrate that Arc targets AMPAR to be internalized through a direct interaction with the clathrin-adaptor protein 2 (AP-2). We show that Arc overexpression in dissociated hippocampal neurons obtained from C57BL/6 mouse reduces the density of AMPAR GluA1 subunits at the cell surface and reduces the amplitude and rectification of AMPAR-mediated miniature-EPSCs (mEPSCs). Mutations of Arc, that prevent the AP-2 interaction reduce Arc-mediated endocytosis of GluA1 and abolish the reduction in AMPAR-mediated mEPSC amplitude and rectification. Depletion of the AP-2 subunit µ2 blocks the Arc-mediated reduction in mEPSC amplitude, an effect that is restored by reintroducing µ2. The Arc-AP-2 interaction plays an important role in homeostatic synaptic scaling as the Arc-dependent decrease in mEPSC amplitude, induced by a chronic increase in neuronal activity, is inhibited by AP-2 depletion. These data provide a mechanism to explain how activity-dependent expression of Arc decisively controls the fate of AMPAR at the cell surface and modulates synaptic strength, via the direct interaction with the endocytic clathrin adaptor AP-2.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas do Citoesqueleto/metabolismo , Endocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Receptores de AMPA/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Proteínas do Citoesqueleto/genética , Escherichia coli , Potenciais Pós-Sinápticos Excitadores/fisiologia , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteoma , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
J Neurosci ; 32(38): 13039-51, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22993422

RESUMO

The ability of neurons to modulate synaptic strength underpins synaptic plasticity, learning and memory, and adaptation to sensory experience. Despite the importance of synaptic adaptation in directing, reinforcing, and revising the behavioral response to environmental influences, the cellular and molecular mechanisms underlying synaptic adaptation are far from clear. Brain-derived neurotrophic factor (BDNF) is a prime initiator of structural and functional synaptic adaptation. However, the signaling cascade activated by BDNF to initiate these adaptive changes has not been elucidated. We have previously shown that BDNF activates mitogen- and stress-activated kinase 1 (MSK1), which regulates gene transcription via the phosphorylation of both CREB and histone H3. Using mice with a kinase-dead knock-in mutation of MSK1, we now show that MSK1 is necessary for the upregulation of synaptic strength in response to environmental enrichment in vivo. Furthermore, neurons from MSK1 kinase-dead mice failed to show scaling of synaptic transmission in response to activity deprivation in vitro, a deficit that could be rescued by reintroduction of wild-type MSK1. We also show that MSK1 forms part of a BDNF- and MAPK-dependent signaling cascade required for homeostatic synaptic scaling, which likely resides in the ability of MSK1 to regulate cell surface GluA1 expression via the induction of Arc/Arg3.1. These results demonstrate that MSK1 is an integral part of a signaling pathway that underlies the adaptive response to synaptic and environmental experience. MSK1 may thus act as a key homeostat in the activity- and experience-dependent regulation of synaptic strength.


Assuntos
Homeostase/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sinapses/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Espinhas Dendríticas/fisiologia , Meio Ambiente , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Homeostase/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Mutação Puntual/genética , Receptores de AMPA/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/genética , Tetrodotoxina/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA