Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1372764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903446

RESUMO

Global warming has adversely affected Picea abies (L.) H. Karst. forests in Europe, prompting the need for innovative forest-breeding strategies. Somatic embryogenesis (SE) offers promise but requires protocol refinement. Understanding the molecular mechanisms governing somatic embryo development is essential, as oxidative stress plays a crucial role in SE regulation. Ascorbic acid (ASA), is a vital antioxidant that can potentially control oxidative stress. In the present study, we normalized ASA concentrations in induction and proliferation media to enhance embryogenic tissue (ET) regeneration and proliferation capacity of mature explants. The media were supplemented with ASA at 0 mg l-1, 25 mg l-1, 50 mg l-1, 100 mg l-1, and 200 mg l-1. The accumulation of hydrogen peroxide (H2O2) and endogenous phytohormones, including auxins, cytokinins, brassinosteroids, abscisic acid, and gibberellin, was measured in non-embryonic calli and ET. Subsequently, their impact on ET induction and multiplication was analyzed. Our results demonstrate that application of ASA at concentrations of 25 mg l-1 and 200 mg l-1 led to increased H2O2 levels, potentially inducing oxidative stress while simultaneously reducing the levels of all endohormone groups. Notably, the highest ET induction frequency (approximately 70%) was observed for ASA at 50 mg l-1. These findings will enhance SE induction procedures, particularly in more resistant explants, underscoring the significance of ASA application to culture media.

2.
Plant Methods ; 20(1): 53, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610046

RESUMO

BACKGROUND QUERCUS: seeds that are recalcitrant to desiccation and freezing temperatures cannot be stored in gene banks under conventional conditions. However, the germplasm of some recalcitrant seeded species can be stored in liquid nitrogen (-196 °C). Unfortunately, for many species, among them for almost the whole genus Quercus, an effective cryostorage method is still unknown. In this study, we propose a successful cryostorage protocol for Quercus petraea (Matt.) Liebl. germplasm using plumules (a shoot apical meristem of an embryo) frozen on aluminium cryo-plates. RESULTS: The plumules isolated from the acorns of ten provenances were prestored in 0.5 M sucrose solution (for 18 h). To form alginate beads (one plumule per bead), the plumules were placed in the wells of a cryo-plate and embedded in calcium alginate gel. For cryoprotection, the encapsulated plumules were immersed in cryoprotectant solution containing 2.0 M glycerol and different concentrations of sucrose (0.8-1.2 M) for 40 min at 25 °C and desiccated under a laminar flow cabinet for 1.0-4.0 h. Cryo-plates with plumules were directly immersed in liquid nitrogen and then cryostored for 30 min. For rewarming, cryo-plates with plumules were immersed in 1.0 M sucrose solution and rehydrated for 15 min at 25 °C. Survival rates varied from 25.8 to 83.4 were achieved after cryoprotection in 1.0 M sucrose solution and the drying of plumules for 2 h. The in vitro regrowth rate of cryopreserved plumules varied among provenances and was 26-77%. CONCLUSIONS: This study presents, for the first time, a successful, simple and effective protocol for the cryopreservation of Q. petraea germplasm that could be used in gene banks. The experiment was successfully repeated on seeds from various provenances, each yielding similar, good results. However, seed quality and storage time after harvesting are important factors in plumule regrowth after cryopreservation.

3.
Plant Methods ; 20(1): 10, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233881

RESUMO

BACKGROUND: Cryopreservation makes it possible to preserve plant biodiversity for thousands of years in ex situ storage. The stepwise dehydration method is a simple and versatile cryopreservation technique based on the vitrification phenomenon. However, the commonly used dimethyl sulfoxide (DMSO) in this cryopreservation technique is considered harmful for plant material, thus alternative methods are needed to be applied. RESULTS: In this study, the possibility of cryopreservation of embryogenic tissues (ETs) of Abies alba x A. numidica and Pinus nigra was investigated. Before freezing, ETs were partially dehydrated in the presence of increasing concentrations of sucrose (from 0.25 to 1.0 M) for 7 days, followed by desiccation of the tissues over silica gel for 2 and 2.5 h, respectively. After these pretreatments, the plant material was frozen in liquid nitrogen (LN; -196 °C). For both coniferous trees the ET survival rate was high and reached 84.4% for A. alba x A. numidica (28 days) and 86.7% for P. nigra (35 days) after recovery of the tissues from liquid nitrogen (LN). The regenerated tissue of A. alba x A. numidica was characterized by more intense growth after storage in LN compared to tissue that had not been cryopreserved (control). The tissue of this tree also undertook relatively rapid growth after thawing from LN. In turn, the ET growth of P. nigra was significantly lower after thawing compared to the other treatment. CONCLUSIONS: The present study demonstrated, that the stepwise dehydration method could be successfully applied to the cryostorage of ETs of both studied trees. To the best of our knowledge, this is the first report on ET cryopreservation based on this method for Abies and Pinus genus representatives, which may be the alternative way for efficient, long-term preservation of germplasm in LN.

4.
Metabolites ; 12(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36005628

RESUMO

Pedunculate oak (Quercus robur L.) is an economically important forest-forming species in Poland that produces seeds that are sensitive to desiccation; therefore, short-lived seeds are classified as recalcitrant. Such seeds display active metabolism throughout storage. Acorns stored under controlled conditions (moisture content of 40%, temperature -3 °C) maintain viability for up to 1.5-2 years. Meanwhile, oaks only produce large numbers of seeds every few years during so-called mast years. This results in a scarcity of good-quality seeds for continuous nursery production and restoration. The recalcitrant storage behavior and the requirements of foresters make it necessary to develop a new protocol for longer acorn storage at lower temperatures. Two storage temperatures were tested: -3 °C (currently used in forest practice) and -7 °C. Our results showed that acorns stored for six months exhibited deterioration and reduced germination capacity, as well as reduced seedling performance, particularly when acorns were stored at -7 °C. To elucidate the decrease in quality during storage, an untargeted metabolomics study was performed for the first time and supported with the analysis of carbohydrates and percentages of carbon (C) and nitrogen (N). Embryonic axes were characterized by a lower C:N ratio and higher hydration. A total of 1985 metabolites were detected, and 303 were successfully identified and quantified, revealing 44 known metabolites that displayed significantly up- or downregulated abundance. We demonstrated for the first time that the significant deterioration of seed germination potential, particularly in seeds stored at -7 °C, was accompanied by an increased abundance of phenolic compounds and carbohydrates but also amino acids and phosphorylated monosaccharides, particularly in the embryonic axes. The increased abundance of defense-related metabolites (1,2,4-Benzenetriol; BTO), products of ascorbic acid degradation (threonic and isothreonic acid), as well as antifreezing compounds (sugar alcohols, predominantly threitol), was reported in seed stored at -7 °C. We hypothesize that seed deterioration was caused by freezing stress experienced during six months of storage at -7 °C, a decline in antioxidative potential and the unsuccessful rerouting of the energy-production pathways. Additionally, our data are a good example of the application of high-throughput metabolomic tools in forest management.

5.
PLoS One ; 15(6): e0234510, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555619

RESUMO

Seeds stored in controlled conditions in gene banks, faster or slower lose their viability. The effects of seed moisture content levels (ca. 5, 8, 11%) combined with storage temperatures (-3°, -18°, -196°C) were investigated in terms of the description of seeds defined as orthodox under oxidative stress after seed storage, during germination, and initial seedling growth. Hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) and ascorbate (Asc) were analyzed in relation to seed germinability and seedlings emergence in three species: Malus sylvestris L., Prunus avium L. and Prunus padus L. The effect of seed storage conditions on H2O2 levels appeared in germinated seeds after the third year of storage in each species. The H2O2 levels were negatively correlated with the germination and seedling emergence of P. avium seeds after three years of storage under all examined combinations. The emergence of P. padus seedlings was not linked to any of the stress markers tested. The P. padus seed biochemical traits were least altered by storage conditions, and the seeds produced tolerant seedlings of relatively high levels of H2O2 and TBARS. To cope with different H2O2 levels, TBARS levels, and Asc levels in seeds of three species varying storage conditions different molecular responses, i.e. repairing mechanisms, were applied during stratification to compensate for the storage conditions and, as a result, seeds remained viable and seedlings were successfully established.


Assuntos
Malus/metabolismo , Prunus avium/metabolismo , Plântula/genética , Germinação/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Malus/crescimento & desenvolvimento , Oxirredução/efeitos dos fármacos , Prunus avium/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA