Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(4): 1827-1833, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29303566

RESUMO

Silica-bearing waters in nature often alter the reactivity of mineral surfaces via deposition of Si complexes and solids. In this work, Fourier transform infrared (FTIR) spectroscopy was used to identify hydroxo groups at goethite (α-FeOOH) and lepidocrocite (γ-FeOOH) surfaces that are targeted by ligand exchange reactions with monomeric silicate species. Measurements of samples first reacted in aqueous solutions then dried under N2(g) enabled resolution of the signature O-H stretching bands of singly (-OH), doubly (µ-OH), and triply coordinated (µ3-OH) groups. Samples reacted with Si for 3 and 30 d at pH 4 and 7 revealed that -OH groups were preferentially exchanged by silicate and that µ-OH and µ3-OH groups were not exchanged. Based on knowledge of the disposition of -OH groups on the major crystallographic faces of goethite and lepidocrocite, and the response of these groups to ligand exchange prior oligomerization, our work points to the predominance of rows of mononuclear monodentate silicate species, each separated by at least one -OH group. These species are the attachment sites from which oligomerization and polymerization reactions occur, starting at loadings exceeding ∼1 Si/nm2 and corresponding to soluble Si concentrations that can be as low as ∼0.7 mM after 30 d reaction time. Only above such loadings can reaction products grow away from rows of -OH groups and form hydrogen bonds with nonexchangeable µ-OH and µ3-OH groups. These findings have important repercussions for our understanding of the fate of waterborne silicate ions exposed to minerals.


Assuntos
Silicatos , Água , Compostos Férricos , Ligação de Hidrogênio , Polimerização
2.
J Phys Chem B ; 119(33): 10630-42, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26222332

RESUMO

Nucleation is a fundamental step in crystal growth. Of environmental and materials relevance are reactions that lead to nucleation of iron oxyhydroxides in aqueous solutions. These reactions are difficult to study experimentally due to their rapid kinetics. Here, we used classical molecular dynamics simulations to investigate nucleation of iron hydroxide/oxyhydroxide nanoparticles in aqueous solutions. Results show that in a solution containing ferric ions and hydroxyl groups, iron-hydroxyl molecular clusters form by merging ferric monomers, dimers, and other oligomers, driven by strong affinity of ferric ions to hydroxyls. When deprotonation reactions are not considered in the simulations, these clusters aggregate to form small iron hydroxide nanocrystals with a six-membered ring-like layered structure allomeric to gibbsite. By comparison, in a solution containing iron chloride and sodium hydroxide, the presence of chlorine drives cluster assembly along a different direction to form long molecular chains (rather than rings) composed of Fe-O octahedra linked by edge sharing. Further, in chlorine-free solutions, when deprotonation reactions are considered, the simulations predict ultimate formation of amorphous iron oxyhydroxide nanoparticles with local atomic structure similar to that of ferrihydrite nanoparticles. Overall, our simulation results reveal that nucleation of iron oxyhydroxide nanoparticles proceeds via a cluster aggregation-based nonclassical pathway.

3.
Science ; 344(6188): 1094-5, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24904144
4.
Environ Sci Technol ; 48(11): 6177-83, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24815551

RESUMO

Induced mineral precipitation is potentially important for the remediation of contaminants, such as during mineral trapping during carbon or toxic metal sequestration. The prediction of precipitation reactions is complicated by the porous nature of rocks and soils and their interaction with the precipitate, introducing transport and confinement effects. Here X-ray scattering measurements, modeling, and electron microscopies were used to measure the kinetics of calcium carbonate precipitation in a porous amorphous silica (CPG) that contained two discrete distributions of pore sizes: nanopores and macropores. To examine the role of the favorability of interaction between the substrate and precipitate, some of the CPG was functionalized with a self-assembled monolayer (SAM) similar to those known to enhance nucleation densities on planar substrates. Precipitation was found to occur exclusively in macropores in the native CPG, while simultaneous precipitation in nanopores and macropores was observed in the functionalized CPG. The rate of precipitation in the nanopores estimated from the model of the X-ray scattering matched that measured on calcite single crystals. These results suggest that the pore-size distribution in which a precipitation reaction preferentially occurs depends on the favorability of interaction between substrate and precipitate, something not considered in most studies of precipitation in porous media.


Assuntos
Carbonato de Cálcio/química , Nanoporos/ultraestrutura , Precipitação Química , Modelos Teóricos , Porosidade , Dióxido de Silício/química
5.
Environ Sci Technol ; 48(10): 5745-53, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24730716

RESUMO

Interfacial free energies often control heterogeneous nucleation of calcium carbonate (CaCO3) on mineral surfaces. Here we report an in situ experimental study of CaCO3 nucleation on mica (muscovite) and quartz, which allows us to obtain the interfacial energies governing heterogeneous nucleation. In situ grazing incidence small-angle X-ray scattering (GISAXS) was used to measure nucleation rates at different supersaturations. The rates were incorporated into classical nucleation theory to calculate the effective interfacial energies (α'). Ex situ Raman spectroscopy identified both calcite and vaterite as CaCO3 polymorphs; however, vaterite is the most probable heterogeneous nuclei mineral phase. The α' was 24 mJ/m(2) for the vaterite-mica system and 32 mJ/m(2) for the vaterite-quartz system. The smaller α' of the CaCO3-mica system led to smaller particles and often higher particle densities on mica. A contributing factor affecting α' in our system was the smaller structural mismatch between CaCO3 and mica compared to that between CaCO3 and quartz. The extent of hydrophilicity and the surface charge could not explain the observed CaCO3 nucleation trend on mica and quartz. The findings of this study provide new thermodynamic parameters for subsurface reactive transport modeling and contribute to our understanding of mechanisms where CaCO3 formation on surfaces is of concern.


Assuntos
Silicatos de Alumínio/química , Carbonato de Cálcio/química , Quartzo/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Espalhamento a Baixo Ângulo , Soluções , Análise Espectral Raman , Termodinâmica , Difração de Raios X
6.
Phys Chem Chem Phys ; 15(40): 17303-13, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24018485

RESUMO

An emerging area in chemical science is the study of solid-phase redox reactions using ultrafast time-resolved spectroscopy. We have used molecules of the photoactive dye 2',7'-dichlorofluorescein (DCF) anchored to the surface of iron(III) oxide nanoparticles to create iron(II) surface atoms via photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(III) oxide nanoparticles has not been reported. We addressed this topic by performing femtosecond transient absorption (TA) measurements of aqueous suspensions of uncoated and DCF-sensitized iron oxide and oxyhydroxide nanoparticles, and an aqueous iron(III)-dye complex. Following light absorption, excited state relaxation times of the dye of 115-310 fs were found for all samples. Comparison between TA dynamics on uncoated and dye-sensitized hematite nanoparticles revealed the dye de-excitation pathway to consist of a competition between electron and energy transfer to the nanoparticles. We analyzed the TA data for hematite nanoparticles using a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye-oxide energy transfer is energetically forbidden) even though the acceptor states are different. Comparison of the alignment of the excited states of the dye and the unoccupied states of these oxides showed that the dye injects into acceptor states of different symmetry (Ti t2gvs. Fe eg).

7.
Science ; 341(6148): 885-9, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23970697

RESUMO

Recent experimental observations of the onset of calcium carbonate (CaCO3) mineralization suggest the emergence of a population of clusters that are stable rather than unstable as predicted by classical nucleation theory. This study uses molecular dynamics simulations to probe the structure, dynamics, and energetics of hydrated CaCO3 clusters and lattice gas simulations to explore the behavior of cluster populations before nucleation. Our results predict formation of a dense liquid phase through liquid-liquid separation within the concentration range in which clusters are observed. Coalescence and solidification of nanoscale droplets results in formation of a solid phase, the structure of which is consistent with amorphous CaCO3. The presence of a liquid-liquid binodal enables a diverse set of experimental observations to be reconciled within the context of established phase-separation mechanisms.

9.
Inorg Chem ; 52(12): 6788-97, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23701439

RESUMO

The structure of ferric iron (Fe(3+)) dimers in aqueous solutions has long been debated. In this work, we have determined the dimer structure in situ in aqueous solutions using extended X-ray absorption fine structure (EXAFS) spectroscopy. An Fe K-edge EXAFS analysis of 0.2 M ferric nitrate solutions at pH 1.28-1.81 identified a Fe-Fe distance at ∼3.6 Å, strongly indicating that the dimers take the µ-oxo form. The EXAFS analysis also indicates two short Fe-O bonds at ∼1.80 Å and ten long Fe-O bonds at ∼2.08 Å, consistent with the µ-oxo dimer structure. The scattering from the Fe-Fe paths interferes destructively with that from paths belonging to Fe(OH2)6(3+) monomers that coexist with the dimers, leading to a less apparent Fe shell in the EXAFS Fourier transform. This might be a reason why the characteristic Fe-Fe distance was not detected in previous EXAFS studies. The existence of µ-oxo dimers is further confirmed by Mössbauer analyses of analogous quick frozen solutions. This work also explores the electronic structure and the relative stability of the µ-oxo dimer in a comparison to the dihydroxo dimer using density function theory (DFT) calculations. The identification of such dimers in aqueous solutions has important implications for iron (bio)inorganic chemistry and geochemistry, such as understanding the formation mechanisms of Fe oxyhydroxides at molecular scale.

10.
Environ Sci Technol ; 47(1): 102-9, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22646799

RESUMO

The precipitation of carbonate minerals--mineral trapping--is considered one of the safest sequestration mechanisms ensuring long-term geologic storage of CO(2). However, little is known about the thermodynamic factors controlling the extent of heterogeneous nucleation at mineral surfaces exposed to the fluids in porous reservoirs. The goal of this study is to determine the thermodynamic factors controlling heterogeneous nucleation of carbonate minerals on pristine quartz (100) surfaces, which are assumed representative of sandstone reservoirs. To probe CaCO(3) nucleation on quartz (100) in solution and with nanoscale resolution, an in situ grazing incidence small-angle X-ray scattering technique has been utilized. With this method, a value of α' = 36 ± 5 mJ/m(2) for the effective interfacial free energy governing heterogeneous nucleation of CaCO(3) has been obtained by measuring nucleation rates at different solution supersaturations. This value is lower than the interfacial energy governing calcite homogeneous nucleation (α ≈ 120 mJ/m(2)), suggesting that heterogeneous nucleation of calcium carbonate is favored on quartz (100) at ambient pressure and temperature conditions, with nucleation barriers between 2.5% and 15% lower than those expected for homogeneous nucleation. These observations yield important quantitative parameters readily usable in reactive transport models of nucleation at the reservoir scale.


Assuntos
Carbonato de Cálcio/química , Dióxido de Carbono/química , Sequestro de Carbono , Quartzo/química , Termodinâmica
11.
Science ; 337(6099): 1200-3, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22955830

RESUMO

Electron mobility within iron (oxyhydr)oxides enables charge transfer between widely separated surface sites. There is increasing evidence that this internal conduction influences the rates of interfacial reactions and the outcomes of redox-driven phase transformations of environmental interest. To determine the links between crystal structure and charge-transport efficiency, we used pump-probe spectroscopy to study the dynamics of electrons introduced into iron(III) (oxyhydr)oxide nanoparticles via ultrafast interfacial electron transfer. Using time-resolved x-ray spectroscopy and ab initio calculations, we observed the formation of reduced and structurally distorted metal sites consistent with small polarons. Comparisons between different phases (hematite, maghemite, and ferrihydrite) revealed that short-range structural topology, not long-range order, dominates the electron-hopping rate.

12.
Environ Sci Technol ; 46(15): 8140-7, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22765054

RESUMO

The phases and stability of ferric iron products formed early during neutralization of acid mine drainage waters remain largely unknown. In this work, we used in situ and time-resolved quick-scanning X-ray absorption spectroscopy and X-ray diffraction to study products formed between 4 min and 1 h after ferric iron sulfate solutions were partially neutralized by addition of NaHCO(3) ([HCO(3)(-)]/[Fe(3+)] < 3). When [HCO(3)(-)]/[Fe(3+)] = 0.5 and 0.6 (initial pH ∼ 2.1 and 2.2, respectively), the only large species formed were sulfate-complexed ferrihydrite-like molecular clusters that were stable throughout the duration of the experiment. When [HCO(3)(-)]/[Fe(3+)] = 1 (initial pH ∼ 2.5), ferrihydrite-like molecular clusters formed initially, but most later converted to schwertmannite. In contrast, when [HCO(3)(-)]/[Fe(3+)] = 2 (initial pH ∼ 2.7), schwertmannite and larger ferrihydrite particles formed immediately upon neutralization. However, the ferrihydrite particles subsequently converted to schwertmannite. The schwertmannite particles formed under both conditions aggregated extensively with increasing time. This work provides new insight into the formation, stability and reactivity of some early products that may form during the neutralization of natural acid mine drainage.


Assuntos
Ácidos , Compostos Férricos/síntese química , Mineração , Cor , Soluções , Espectrofotometria Ultravioleta , Espectroscopia por Absorção de Raios X , Difração de Raios X
13.
Environ Sci Technol ; 46(7): 3821-30, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22394451

RESUMO

Sorption of contaminants onto mineral surfaces is an important process that can restrict their transport in the environment. In the current study, uranium (U) uptake on magnetite (111) was measured as a function of time and solution composition (pH, [CO(3)](T), [Ca]) under continuous batch-flow conditions. We observed, in real-time and in situ, adsorption and reduction of U(VI) and subsequent growth of UO(2) nanoprecipitates using atomic force microscopy (AFM) and newly developed batch-flow U L(III)-edge grazing-incidence X-ray absorption spectroscopy near-edge structure (GI-XANES) spectroscopy. U(VI) reduction occurred with and without CO(3) present, and coincided with nucleation and growth of UO(2) particles. When Ca and CO(3) were both present no U(VI) reduction occurred and the U surface loading was lower. In situ batch-flow AFM data indicated that UO(2) particles achieved a maximum height of 4-5 nm after about 8 h of exposure, however, aggregates continued to grow laterally after 8 h reaching up to about 300 nm in diameter. The combination of techniques indicated that U uptake is divided into three-stages; (1) initial adsorption of U(VI), (2) reduction of U(VI) to UO(2) nanoprecipitates at surface-specific sites after 2-3 h of exposure, and (3) completion of U(VI) reduction after ~6-8 h. U(VI) reduction also corresponded to detectable increases in Fe released to solution and surface topography changes. Redox reactions are proposed that explicitly couple the reduction of U(VI) to enhanced release of Fe(II) from magnetite. Although counterintuitive, the proposed reaction stoichiometry was shown to be largely consistent with the experimental results. In addition to providing molecular-scale details about U sorption on magnetite, this work also presents novel advances for collecting surface sensitive molecular-scale information in real-time under batch-flow conditions.


Assuntos
Óxido Ferroso-Férrico/química , Urânio/química , Adsorção , Meio Ambiente , Ferro/química , Cinética , Microscopia de Força Atômica , Nanopartículas/química , Oxirredução , Tamanho da Partícula , Propriedades de Superfície , Síncrotrons , Compostos de Urânio/química , Espectroscopia por Absorção de Raios X
14.
Environ Sci Technol ; 46(7): 3811-20, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22364181

RESUMO

Sequestration of uranium (U) by magnetite is a potentially important sink for U in natural and contaminated environments. However, molecular-scale controls that favor U(VI) uptake including both adsorption of U(VI) and reduction to U(IV) by magnetite remain poorly understood, in particular, the role of U(VI)-CO(3)-Ca complexes in inhibiting U(VI) reduction. To investigate U uptake pathways on magnetite as a function of U(VI) aqueous speciation, we performed batch sorption experiments on (111) surfaces of natural single crystals under a range of solution conditions (pH 5 and 10; 0.1 mM U(VI); 1 mM NaNO(3); and with or without 0.5 mM CO(3) and 0.1 mM Ca) and characterized surface-associated U using grazing incidence extended X-ray absorption fine structure spectroscopy (GI-EXAFS), grazing incidence X-ray diffraction (GI-XRD), and scanning electron microscopy (SEM). In the absence of both carbonate ([CO(3)](T), denoted here as CO(3)) and calcium (Ca), or in the presence of CO(3) only, coexisting adsorption of U(VI) surface species and reduction to U(IV) occurs at both pH 5 and 10. In the presence of both Ca and CO(3), only U(VI) adsorption (VI) occurs. When U reduction occurs, nanoparticulate UO(2) forms only within and adjacent to surface microtopographic features such as crystal boundaries and cracks. This result suggests that U reduction is limited to defect-rich surface regions. Further, at both pH 5 and 10 in the presence of both CO(3) and Ca, U(VI)-CO(3)-Ca ternary surface species develop and U reduction is inhibited. These findings extend the range of conditions under which U(VI)-CO(3)-Ca complexes inhibit U reduction.


Assuntos
Precipitação Química , Óxido Ferroso-Férrico/química , Nanopartículas/química , Urânio/isolamento & purificação , Adsorção , Cálcio/química , Concentração de Íons de Hidrogênio , Análise dos Mínimos Quadrados , Modelos Químicos , Movimento (Física) , Nanopartículas/ultraestrutura , Oxirredução , Espectrometria por Raios X , Propriedades de Superfície , Espectroscopia por Absorção de Raios X
15.
J Am Chem Soc ; 133(11): 3846-53, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21361284

RESUMO

Sum-frequency vibrational spectroscopy was used to study the protonated R-plane (1102) sapphire surface. The OH stretch vibrational spectra show that the surface is terminated with three hydroxyl moieties, two from AlOH(2) and one from Al(2)OH functional groups. The observed polarization dependence allows determination of the orientations of the three OH species. The results suggest that the protonated sapphire (1102) surface differs from an ideal stoichiometric termination in a manner consistent with previous X-ray surface diffraction (crystal truncation rod) studies. However, in order to best explain the observed hydrogen-bonding arrangement, surface oxygen spacing determined from the X-ray diffraction study requires modification.

16.
Environ Sci Technol ; 45(5): 1873-9, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21280667

RESUMO

The local structure of aqueous metal ions on solid surfaces is central to understanding many chemical and biological processes in soil and aquatic environments. Here, the local coordination structure of hydrated Zn(II) at water-TiO(2) interfaces was identified by extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) spectroscopy combined with density functional theory (DFT) calculations. A nonintegral coordination number of average ∼4.5 O atoms around a central Zn atom was obtained by EXAFS analysis. DFT calculations indicated that this coordination structure was consistent with the mixture of 4-coordinated bidentate binuclear (BB) and 5-coordinated bidentate mononuclear (BM) metastable equilibrium adsorption (MEA) states. The BB complex has 4-coordinated Zn, while the monodentate mononuclear (MM) complex has 6-coordinated Zn, and a 5-coordinated adsorbed Zn was found in the BM adsorption mode. DFT calculated energies showed that the lower-coordinated BB and BM modes were thermodynamically more favorable than the higher-coordinated MM MEA state. The experimentally observed XANES fingerprinting provided additional direct spectral evidence of 4- and 5-coordinated Zn-O modes. The overall spectral and computational evidence indicated that Zn(II) can occur in 4-, 5-, and 6-oxygen coordinated sites in different MEA states due to steric hindrance effects, and the coexistence of different MEA states formed the multiple coordination environments.


Assuntos
Titânio/química , Zinco/química , Adsorção , Modelos Químicos , Estrutura Molecular , Espectroscopia por Absorção de Raios X
17.
Environ Sci Technol ; 44(21): 8182-9, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20932004

RESUMO

The early development of nanoparticles at mineral-water interfaces exerts crucial influences on the sequestration and transport of aqueous toxic species originating from both natural and anthropogenic sources. Homogeneous and heterogeneous nucleation often occur simultaneously, making it difficult to sort out whether toxic species are transported as free species, sorbed on nanoparticle surfaces, or trapped between aggregated nanoparticles. Here, using a newly developed X-ray scattering setup, we show how homogeneous nucleation and growth can be quantitatively separated from heterogeneous processes under aqueous conditions in real-time. Under conditions found in acid-mine-drainage (at pH 3.6 and [Fe(3+)] = 10(-4) M), heterogeneous nucleation of iron oxide nanoparticles on quartz dominated homogeneous nucleation by a factor of 192 (by particle volume). The smallest heterogeneously formed nanoparticles had radii of 1.7 ± 0.5 nm, significantly smaller than the size estimated using classical nucleation theory (CNT). Based on the data, the dominant nucleation and growth mechanisms of iron oxide nanoparticles depending on ionic strength were presented. Our findings have implications for the formation and transport of nanoparticles, and thus toxins, in both environmental and biological systems.


Assuntos
Compostos Férricos/química , Nanopartículas Metálicas/química , Poluentes Químicos da Água/química , Cinética , Concentração Osmolar , Quartzo/química , Análise Espectral , Raios X
18.
J Am Chem Soc ; 130(39): 13033-9, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18774819

RESUMO

Phase-sensitive sum-frequency vibrational spectroscopy was used to study water/vapor interfaces of HCl, HI, and NaOH solutions. The measured imaginary part of the surface spectral responses provided direct characterization of OH stretch vibrations and information about net polar orientations of water species contributing to different regions of the spectrum. We found clear evidence that hydronium ions prefer to emerge at interfaces. Their OH stretches contribute to the "ice-like" band in the spectrum. Their charges create a positive surface field that tends to reorient water molecules more loosely bonded to the topmost water layer with oxygen toward the interface, and thus enhances significantly the "liquid-like" band in the spectrum. Iodine ions in solution also like to appear at the interface and alter the positive surface field by forming a narrow double-charge layer with hydronium ions. In NaOH solution, the observed weak change of the "liquid-like" band and disappearance of the "ice-like" band in the spectrum indicates that OH(-) ions must also have excess at the interface. How they are incorporated in the interfacial water structure is, however, not clear.

19.
J Am Chem Soc ; 130(24): 7686-94, 2008 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-18491896

RESUMO

Sum-frequency vibrational spectroscopy in the OH stretch region was employed to study structures of water/alpha-Al2O3 (0001) interfaces at different pH values. Observed spectra indicate that protonation and deprotonation of the alumina surface dominate at low and high pH, respectively, with the interface positively and negatively charged accordingly. The point of zero charge (pzc) appears at pH approximately = 6.3, which is close to the values obtained from streaming potential and second-harmonic generation studies. It is significantly lower than the pzc of alumina powder. The result can be understood from the pK values of protonation and deprotonation at the water/alpha-Al2O3 (0001) interface. The pzc of amorphous alumina was found to be similar to that of powder alumina.

20.
Phys Rev Lett ; 94(4): 046102, 2005 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-15783575

RESUMO

A phase-sensitive sum-frequency vibrational spectroscopic technique is developed to study interfacial water structure of water/quartz interfaces. Measurements allow deduction of both real and imaginary parts of the surface nonlinear spectral response, revealing an unprecedentedly detailed picture of the net polar orientations of the water species at the interface. The orientations of the icelike and liquidlike species appear to respond very differently to the bulk pH change indicating the existence of different surface sites on quartz with different deprotonation pK values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...