Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 198(11): 1675-1682, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27021561

RESUMO

UNLABELLED: Genes carried on the type 3 secretion system (T3SS) pathogenicity island of Vibrio cholerae non-O1/non-O139 serogroup strain AM-19226 must be precisely regulated in order for bacteria to cause disease. Previously reported results showed that both T3SS function and the presence of bile are required to cause Caco2-BBE cell cytotoxicity during coculture with strain AM-19226. We therefore investigated additional parameters affecting in vitro cell death, including bacterial load and the role of three transmembrane transcriptional regulatory proteins, VttRA, VttRB, and ToxR. VttRA and VttRB are encoded on the horizontally acquired T3SS genomic island, whereas ToxR is encoded on the ancestral chromosome. While strains carrying deletions in any one of the three transcriptional regulatory genes are unable to cause eukaryotic cell death, the results of complementation studies point to a hierarchy of regulatory control that converges on vttRB expression. The data suggest both that ToxR and VttRA act upstream of VttRB and that modifying the level of either vttRA or vttRB expression can strongly influence T3SS gene expression. We therefore propose a model whereby T3SS activity and, hence, in vitro cytotoxicity are ultimately regulated by vttRB expression. IMPORTANCE: In contrast to O1 and O139 serogroup V. cholerae strains that cause cholera using two main virulence factors (toxin-coregulated pilus [TCP] and cholera toxin [CT]), O39 serogroup strain AM-19226 uses a type 3 secretion system as its principal virulence mechanism. Although the regulatory network governing TCP and CT expression is well understood, the factors influencing T3SS-associated virulence are not. Using an in vitro mammalian cell model to investigate the role of three ToxR-like transmembrane transcriptional activators in causing T3SS-dependent cytotoxicity, we found that expression levels and a hierarchical organization were important for promoting T3SS gene expression. Furthermore, our results suggest that horizontally acquired, ToxR-like proteins act in concert with the ancestral ToxR protein to orchestrate T3SS-mediated pathogenicity.


Assuntos
Proteínas de Bactérias/metabolismo , Cólera/microbiologia , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Células CACO-2 , Proteínas de Ligação a DNA/genética , Humanos , Fatores de Transcrição/genética , Sistemas de Secreção Tipo III/genética , Vibrio cholerae/genética
2.
Infect Immun ; 83(7): 2862-2869, 2015 07.
Artigo em Inglês | MEDLINE | ID: mdl-25939511

RESUMO

Vibrio cholerae is a genetically diverse species, and pathogenic strains can encode different virulence factors that mediate colonization and secretory diarrhea. Although the toxin co-regulated pilus (TCP) is the primary colonization factor in epidemic causing V. cholerae strains, other strains do not encode TCP and instead promote colonization via the activity of a type three secretion system (T3SS). Using the infant mouse model and T3SS-positive O39 serogroup strain AM-19226, we sought to determine which of 12 previously identified, T3SS translocated proteins (Vops) are important for host colonization. We constructed in frame deletions in each of the 12 loci in strain AM-19226, and identified five Vop deletion strains, including ΔVopM, which were severely attenuated for colonization. Interestingly, a subset of deletion strains was also incompetent for effector protein transport. Our collective data therefore suggest that several translocated proteins may also function as components of the structural apparatus or translocation machinery, and indicate that while VopM is critical for establishing an infection, the combined activities of other effectors may also contribute to the ability of T3SS-positive strains to colonize host epithelial cell surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...