Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 54: 110416, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38708303

RESUMO

This dataset encapsulates comprehensive information and experimental outcomes derived from the buckling test of variable-stiffness composite cylinders subjected to axial compression. It is the first dataset about the correlation between experimental and computational analysis for a Rapid-Tow Sheared composite cylinder, a recently developed advanced composite manufacturing technique. The data gathered during the test contains: raw test data for force, end-compression and strain gauges; and digital image correlation. The data for finite element validation is for a quasi-isotropic shell and variable-stiffness rapid tow-sheared shell. The data also contain imperfection signatures from a coordinate-measurement machine (CMM) of both cylinders. This compilation of documented data stands as a robust resource for future investigations, enabling comparative analyses, validation of theoretical models, and advancements in the domain of designing and testing composite structures, particularly those employing variable-stiffness manufacturing techniques.

2.
Acta Mech ; 232(10): 4169-4188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720109

RESUMO

New analytical solutions for the static deflection of anisotropic composite beams resting on variable stiffness elastic foundations are obtained by the means of the Homotopy Analysis Method (HAM). The method provides a closed-form series solution for the problem described by a non-homogeneous system of coupled ordinary differential equations with constant coefficients and one variable coefficient reflecting variable stiffness elastic foundation. Analytical solutions are obtained based on two different algorithms, namely conventional HAM and iterative HAM (iHAM). To investigate the computational efficiency and convergence of HAM solutions, the preliminary studies are performed for a composite beam without elastic foundation under the action of transverse uniformly distributed loads considering three different types of stacking sequence which provide different levels and types of anisotropy. It is shown that applying the iterative approach results in better convergence of the solution compared with conventional HAM for the same level of accuracy. Then, analytical solutions are developed for composite beams on elastic foundations. New analytical results based on HAM are presented for the static deflection of composite beams resting on variable stiffness elastic foundations. Results are compared to those reported in the literature and those obtained by the Chebyshev Collocation Method in order to verify the validity and accuracy of the method. Numerical experiments reveal the accuracy and efficiency of the Homotopy Analysis Method in static beam problems.

3.
Proc Math Phys Eng Sci ; 477(2248): 20200815, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35153553

RESUMO

Engineering systems are typically governed by systems of high-order differential equations which require efficient numerical methods to provide reliable solutions, subject to imposed constraints. The conventional approach by direct approximation of system variables can potentially incur considerable error due to high sensitivity of high-order numerical differentiation to noise, thus necessitating improved techniques which can better satisfy the requirements of numerical accuracy desirable in solution of high-order systems. To this end, a novel inverse differential quadrature method (iDQM) is proposed for approximation of engineering systems. A detailed formulation of iDQM based on integration and DQM inversion is developed separately for approximation of arbitrary low-order functions from higher derivatives. Error formulation is further developed to evaluate the performance of the proposed method, whereas the accuracy through convergence, robustness and numerical stability is presented through articulation of two unique concepts of the iDQM scheme, known as Mixed iDQM and Full iDQM. By benchmarking iDQM solutions of high-order differential equations of linear and nonlinear systems drawn from heat transfer and mechanics problems against exact and DQM solutions, it is demonstrated that iDQM approximation is robust to furnish accurate solutions without losing computational efficiency, and offer superior numerical stability over DQM solutions.

4.
Sci Rep ; 7(1): 9197, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835614

RESUMO

The principle of control signal amplification is found in all actuation systems, from engineered devices through to the operation of biological muscles. However, current engineering approaches require the use of hard and bulky external switches or valves, incompatible with both the properties of emerging soft artificial muscle technology and those of the bioinspired robotic systems they enable. To address this deficiency a biomimetic molecular-level approach is developed that employs light, with its excellent spatial and temporal control properties, to actuate soft, pH-responsive hydrogel artificial muscles. Although this actuation is triggered by light, it is largely powered by the resulting excitation and runaway chemical reaction of a light-sensitive acid autocatalytic solution in which the actuator is immersed. This process produces actuation strains of up to 45% and a three-fold chemical amplification of the controlling light-trigger, realising a new strategy for the creation of highly functional soft actuating systems.

5.
Nanoscale ; 7(39): 16343-53, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26383028

RESUMO

Phase-pure BiFeO3 films were grown directly via dual-source low-pressure CVD (LPCVD) from the ligand-matched precursors [Bi(O(t)Bu)3] and [Fe(O(t)Bu)3]2, without the requirement for oxidising gas or post deposition annealing. Photocatalytic testing for water oxidation revealed extremely high activity for PEC water splitting and photocatalytic water oxidation under visible light irradiation (λ > 420 nm) with a benchmark IPCE for BiFeO3 of 23% at 400 nm. The high activity is ascribed to the ultrafine morphology achieved via the LPCVD process. The performance was enhanced by over four times when the BiFeO3 photoanode is coupled to a Ni-B surface OEC.


Assuntos
Compostos de Cálcio/química , Luz , Níquel/química , Óxidos/química , Oxigênio/química , Processos Fotoquímicos , Titânio/química , Água/química , Catálise
6.
Artigo em Inglês | MEDLINE | ID: mdl-25585393

RESUMO

Piezoelectric actuators and sensors are widely used for flow control valves, including diesel injectors, ultrasound generation, optical positioning, printing, pumps, and locks. Degradation and failure of material and electrical properties at high temperature typically limits these applications to operating temperatures below 200°C, based on the ubiquitous Pb(Zr,Ti)O3 ceramic. There are, however, many applications in sectors such as automotive, aerospace, energy and process control, and oil and gas, where the ability to operate at higher temperatures would open up new markets for piezoelectric actuation. Presented here is a review of recent progress and initial results toward a European effort to develop measurement techniques to characterize high-temperature materials. Full-field, multi-wavelength absolute length interferometry has, for the first time, been used to map the electric-field-induced piezoelectric strain across the surface of a PZT ceramic. The recorded variation as a function of temperature has been evaluated against a newly developed commercial single-beam system. Conventional interferometry allows measurement of the converse piezoelectric effect with high precision and resolution, but is often limited to a single point, average measurement and to limited sample environments because of optical aberrations in varying atmospheres. Here, the full-field technique allows the entire surface to be analyzed for strain and, in a bespoke sample chamber, for elevated temperatures.

7.
Phys Rev Lett ; 109(11): 117601, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23005675

RESUMO

The effects of the lattice strain induced by neutral oxygen vacancies in ferroelectric tetragonal BaTiO(3) and KNbO(3) are investigated using ab initio simulations. We propose that an oxygen vacancy can transform from its metastable equatorial configuration to the stable axial configuration via either diffusion or rotation of the polar axis near the vacancy site by 90°. The latter mechanism, predicted to dominate in materials with slow oxygen vacancy diffusion and low formation energy of 90° domain walls, can stimulate the formation of domains with their polar axes pinned by the vacancies.

8.
Artigo em Inglês | MEDLINE | ID: mdl-21937304

RESUMO

Electrostriction plays a central role in describing the electromechanical properties of ferroelectric materials, including widely used piezoelectric ceramics. The piezoelectric properties are closely related to the underlying electrostriction. Small-field piezoelectric properties can be described as electrostriction offset by the remanent polarization which characterizes the ferroelectric state. Indeed, even large-field piezoelectric effects are accurately accounted for by quadratic electrostriction. However, the electromechanical properties deviate from this simple electrostrictive description at electric fields near the coercive field. This is particularly important for actuator applications, for which very high electromechanical coupling can be obtained in this region. This paper presents the results of an experimental study of electromechanical coupling in piezoelectric ceramics at electric field strengths close to the coercive field, and the effects of temperature on electromechanical processes during polarization reversal. The roles of intrinsic ferroelectric strain coupling and extrinsic domain processes and their temperature dependence in determining the electromechanical response are discussed.

9.
Artigo em Inglês | MEDLINE | ID: mdl-21937319

RESUMO

Time- and temperature-dependent effects are critical for the operation of non-volatile memories based on ferroelectrics. In this paper, we assume a domain nucleation process of the polarization reversal and we discuss the polarization dynamics in the framework of a non-equilibrium statistical model. This approach yields analytical expressions which can be used to explain a wide range of time- and temperature-dependent effects in ferroelectrics. Domain wall velocity derived in this work is consistent with a domain wall creep behavior in ferroelectrics. In the limiting case of para-electric equilibrium, the model yields the well-known Curie law. We also present experimental P-E loops data obtained for soft ferroelectrics at various temperatures. The experimental coercive fields at various temperatures are well predicted by the coercive field formula derived in our theory.

10.
Artigo em Inglês | MEDLINE | ID: mdl-21507748

RESUMO

A novel drive system is described which improves the operational characteristics of piezoelectric actuators. Electronic controls to increase the range of movement across a wide temperature range usually need a temperature sensor for maximum effect. This paper describes a novel system that uses the polarization characteristics of the piezoelectric ceramic to reverse polarize the ceramic without a temperature measurement. Significant improvements in the operating temperature range for devices such as locks or valves are achieved.


Assuntos
Simulação por Computador , Eletrônica/instrumentação , Transdutores , Cerâmica/química , Desenho Assistido por Computador/instrumentação , Desenho de Equipamento/instrumentação , Análise de Falha de Equipamento/instrumentação , Mecânica , Dinâmica não Linear , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...