Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Dev Pathol ; 25(3): 316-320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34606386

RESUMO

Chorangioma is the most common type of primary non-trophoblastic tumor of the placenta, usually identified incidentally on ultrasound or at delivery. Leiomyomas within the placenta have been described, though they are rare and usually of maternal origin. We present an unusual case of a placental tumor with combined histopathologic and immunohistochemical features of both chorangioma and leiomyoma. A 39-year-old woman was found to have an echogenic placental mass at 33 weeks of gestation on ultrasound, that was thought to be a chorangioma. They followed up weekly, and performed a cesarean section at 39 weeks, due to concern for intrauterine growth restriction. No fetal or maternal complications occurred. Grossly, a 9-cm, red-brown mass with a broad-based stalk was identified on the fetal surface of the placenta near the periphery. Microscopically, the lesion was found to display characteristic features of chorangioma, with vascular proliferation, which stained positive for CD34 and CD31. SMA and caldesmon immunohistochemical staining was also positive, highlighting the proliferation of smooth muscle throughout the neoplasm. Literature review revealed a single additional case with similar characteristics.


Assuntos
Hemangioma , Leiomioma , Doenças Placentárias , Adulto , Cesárea , Feminino , Hemangioma/diagnóstico , Hemangioma/patologia , Humanos , Leiomioma/diagnóstico , Leiomioma/patologia , Placenta/patologia , Doenças Placentárias/diagnóstico , Doenças Placentárias/patologia , Gravidez
2.
Viruses ; 13(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34960622

RESUMO

Hendra virus (HeV) is a zoonotic enveloped member of the family Paramyoxviridae. To successfully infect a host cell, HeV utilizes two surface glycoproteins: the attachment (G) protein to bind, and the trimeric fusion (F) protein to merge the viral envelope with the membrane of the host cell. The transmembrane (TM) region of HeV F has been shown to have roles in F protein stability and the overall trimeric association of F. Previously, alanine scanning mutagenesis has been performed on the C-terminal end of the protein, revealing the importance of ß-branched residues in this region. Additionally, residues S490 and Y498 have been demonstrated to be important for F protein endocytosis, needed for the proteolytic processing of F required for fusion. To complete the analysis of the HeV F TM, we performed alanine scanning mutagenesis to explore the residues in the N-terminus of this region (residues 487-506). In addition to confirming the critical roles for S490 and Y498, we demonstrate that mutations at residues M491 and L492 alter F protein function, suggesting a role for these residues in the fusion process.


Assuntos
Vírus Hendra/genética , Infecções por Henipavirus/virologia , Fusão de Membrana , Proteínas Virais de Fusão/metabolismo , Alanina/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Membrana Celular/metabolismo , Chlorocebus aethiops , Endocitose , Endossomos/metabolismo , Genes Reporter , Vírus Hendra/fisiologia , Humanos , Mutagênese Sítio-Dirigida , Domínios Proteicos , Estabilidade Proteica , Células Vero , Proteínas Virais de Fusão/genética
3.
J Virol ; 93(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31217248

RESUMO

Enveloped viruses utilize surface glycoproteins to bind and fuse with a target cell membrane. The zoonotic Hendra virus (HeV), a member of the family Paramyxoviridae, utilizes the attachment protein (G) and the fusion protein (F) to perform these critical functions. Upon triggering, the trimeric F protein undergoes a large, irreversible conformation change to drive membrane fusion. Previously, we have shown that the transmembrane (TM) domain of the F protein, separate from the rest of the protein, is present in a monomer-trimer equilibrium. This TM-TM association contributes to the stability of the prefusion form of the protein, supporting a role for TM-TM interactions in the control of F protein conformational changes. To determine the impact of disrupting TM-TM interactions, constructs expressing the HeV F TM with limited flanking sequences were synthesized. Coexpression of these constructs with HeV F resulted in dramatic reductions in the stability of F protein expression and fusion activity. In contrast, no effects were observed when the HeV F TM constructs were coexpressed with the nonhomologous parainfluenza virus 5 (PIV5) fusion protein, indicating a requirement for specific interactions. To further examine this, a TM peptide homologous to the PIV5 F TM domain was synthesized. Addition of the peptide prior to infection inhibited infection with PIV5 but did not significantly affect infection with human metapneumovirus, a related virus. These results indicate that targeted disruption of TM-TM interactions significantly impact viral fusion protein stability and function, presenting these interactions as a novel target for antiviral development.IMPORTANCE Enveloped viruses require virus-cell membrane fusion to release the viral genome and replicate. The viral fusion protein triggers from the pre- to the postfusion conformation, an essentially irreversible change, to drive membrane fusion. We found that small proteins containing the TM and a limited flanking region homologous to the fusion protein of the zoonotic Hendra virus reduced protein expression and fusion activity. The introduction of exogenous TM peptides may displace a TM domain, disrupting native TM-TM interactions and globally destabilizing the fusion protein. Supporting this hypothesis, we showed that a sequence-specific transmembrane peptide dramatically reduced viral infection in another enveloped virus model, suggesting a broader inhibitory mechanism. Viral fusion protein TM-TM interactions are important for protein function, and disruption of these interactions dramatically reduces protein stability.


Assuntos
Paramyxovirinae/metabolismo , Peptídeos/farmacologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Animais , Sítios de Ligação/efeitos dos fármacos , Chlorocebus aethiops , Vírus Hendra/química , Vírus Hendra/genética , Vírus Hendra/metabolismo , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Vírus da Parainfluenza 5/química , Vírus da Parainfluenza 5/genética , Vírus da Parainfluenza 5/metabolismo , Paramyxovirinae/química , Paramyxovirinae/genética , Conformação Proteica/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , Estabilidade Proteica , Células Vero , Proteínas Virais de Fusão/efeitos dos fármacos
4.
mSphere ; 3(2)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29669880

RESUMO

Enveloped viruses require viral fusion proteins to promote fusion of the viral envelope with a target cell membrane. To drive fusion, these proteins undergo large conformational changes that must occur at the right place and at the right time. Understanding the elements which control the stability of the prefusion state and the initiation of conformational changes is key to understanding the function of these important proteins. The construction of mutations in the fusion protein transmembrane domains (TMDs) or the replacement of these domains with lipid anchors has implicated the TMD in the fusion process. However, the structural and molecular details of the role of the TMD in these fusion events remain unclear. Previously, we demonstrated that isolated paramyxovirus fusion protein TMDs associate in a monomer-trimer equilibrium, using sedimentation equilibrium analytical ultracentrifugation. Using a similar approach, the work presented here indicates that trimeric interactions also occur between the fusion protein TMDs of Ebola virus, influenza virus, severe acute respiratory syndrome coronavirus (SARS CoV), and rabies virus. Our results suggest that TM-TM interactions are important in the fusion protein function of diverse viral families.IMPORTANCE Many important human pathogens are enveloped viruses that utilize membrane-bound glycoproteins to mediate viral entry. Factors that contribute to the stability of these glycoproteins have been identified in the ectodomain of several viral fusion proteins, including residues within the soluble ectodomain. Although it is often thought to simply act as an anchor, the transmembrane domain of viral fusion proteins has been implicated in protein stability and function as well. Here, using a biophysical approach, we demonstrated that the fusion protein transmembrane domains of several deadly pathogens-Ebola virus, influenza virus, SARS CoV, and rabies virus-self-associate. This observation across various viral families suggests that transmembrane domain interactions may be broadly relevant and serve as a new target for therapeutic development.


Assuntos
Glicoproteínas/química , Multimerização Proteica , Proteínas do Envelope Viral/química , Proteínas Virais de Fusão/química , Ebolavirus/química , Ebolavirus/fisiologia , Fusão de Membrana , Orthomyxoviridae/química , Orthomyxoviridae/fisiologia , Domínios Proteicos , Estabilidade Proteica , Vírus da Raiva/química , Vírus da Raiva/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Internalização do Vírus
5.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468881

RESUMO

Hendra virus (HeV) is a zoonotic paramyxovirus that causes deadly illness in horses and humans. An intriguing feature of HeV is the utilization of endosomal protease for activation of the viral fusion protein (F). Here we investigated how endosomal F trafficking affects HeV assembly. We found that the HeV matrix (M) and F proteins each induced particle release when they were expressed alone but that their coexpression led to coordinated assembly of virus-like particles (VLPs) that were morphologically and physically distinct from M-only or F-only VLPs. Mutations to the F protein transmembrane domain or cytoplasmic tail that disrupted endocytic trafficking led to failure of F to function with M for VLP assembly. Wild-type F functioned normally for VLP assembly even when its cleavage was prevented with a cathepsin inhibitor, indicating that it is endocytic F trafficking that is important for VLP assembly, not proteolytic F cleavage. Under specific conditions of reduced M expression, we found that M could no longer induce significant VLP release but retained the ability to be incorporated as a passenger into F-driven VLPs, provided that the F protein was competent for endocytic trafficking. The F and M proteins were both found to traffic through Rab11-positive recycling endosomes (REs), suggesting a model in which F and M trafficking pathways converge at REs, enabling these proteins to preassemble before arriving at plasma membrane budding sites.IMPORTANCE Hendra virus and Nipah virus are zoonotic paramyxoviruses that cause lethal infections in humans. Unlike that for most paramyxoviruses, activation of the henipavirus fusion protein occurs in recycling endosomal compartments. In this study, we demonstrate that the unique endocytic trafficking pathway of Hendra virus F protein is required for proper viral assembly and particle release. These results advance our basic understanding of the henipavirus assembly process and provide a novel model for the interplay between glycoprotein trafficking and paramyxovirus assembly.


Assuntos
Vírus Hendra/genética , Multimerização Proteica , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Virossomos/metabolismo , Linhagem Celular , Endossomos/metabolismo , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios Proteicos , Transporte Proteico , Proteínas da Matriz Viral/metabolismo , Virossomos/genética
6.
J Biol Chem ; 292(14): 5685-5694, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28213515

RESUMO

Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726-35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of ß-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability.


Assuntos
Vírus Hendra/química , Proteínas do Core Viral/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Chlorocebus aethiops , Vírus Hendra/genética , Vírus Hendra/metabolismo , Mutação de Sentido Incorreto , Domínios Proteicos , Relação Estrutura-Atividade , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo
7.
Anal Bioanal Chem ; 408(27): 7745-7751, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27549795

RESUMO

Proteins are constantly synthesized and degraded in living cells during their growth and division, often in response to metabolic and environmental conditions. The synthesis and breakdown of proteins under different conditions reveal information about their mechanism of function. The metabolic incorporation of non-natural amino acid azidohomoalanine (AHA) and subsequent labeling via click chemistry emerged as a non-radioactive strategy useful in the determination of protein kinetics and turnover. We used the method to monitor the degradation of two proteins involved in the multidrug efflux in Escherichia coli, the inner membrane transporter AcrB and its functional partner membrane fusion protein AcrA. Together they form a functional complex with an outer membrane channel TolC to actively transport various small molecule compounds out of E. coli cells. We found that both AcrA and AcrB lasted for approximately 6 days in live E. coli cells, and the stability of AcrB depended on the presence of AcrA but not on active efflux. These results lead to new insight into the multidrug resistance in Gram-negative bacteria conferred by efflux.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Lipoproteínas/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Coloração e Rotulagem/métodos , Alanina/análogos & derivados , Alanina/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Química Click/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/deficiência , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/deficiência , Ligação Proteica , Estabilidade Proteica , Proteólise , Radioisótopos de Enxofre
8.
Biochemistry ; 55(16): 2301-4, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27078234

RESUMO

ATP-dependent degradation plays a critical role in the quality control and recycling of proteins in cells. However, complete degradation of membrane proteins by ATP-dependent proteases in bacteria is not well-studied. We discovered that the degradation of a multidomain and multispan integral membrane protein AcrB could be facilitated by the introduction of a ssrA-tag at the C-terminus of the protein sequence and demonstrated that the cytoplasmic unfoldase-protease complex ClpXP was involved in the degradation. This is the first report to our knowledge to reveal that the ClpXP complex is capable of degrading integral membrane proteins. The chaperone SspB also played a role in the degradation. Using purified proteins, we demonstrated that the addition of the ssrA-tag did not drastically affect the structure of AcrB, and the degradation of detergent solubilized AcrB by purified ClpXP could be observed in vitro.


Assuntos
Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Sequência de Aminoácidos , Escherichia coli/química , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/química , Humanos , Modelos Moleculares , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Conformação Proteica , Proteólise
9.
J Biol Chem ; 288(50): 35726-35, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24178297

RESUMO

Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion.


Assuntos
Membrana Celular/metabolismo , Dobramento de Proteína , Multimerização Proteica , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/virologia , Chlorocebus aethiops , Fusão de Membrana , Dados de Sequência Molecular , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...