Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Tipo de estudo
Intervalo de ano de publicação
1.
Phytochemistry ; 55(6): 551-8, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11130664

RESUMO

Chemical analysis (GC-MS) yielded a total of 58 volatile compounds in the floral scents of six species of Annonaceae distributed in four genera (Xylopia, Anaxagorea, Duguetia, and Rollinia), Xylopia aromatica is pollinated principally by Thysanoptera and secondarily by small beetles (Nitidulidae and Staphylinidae), whereas the five other species were pollinated by Nitidulidae and Staphylinidae only. Although the six Annonaceae species attract a similar array of pollinator groups, the major constituents of their floral scents are of different biochemical origin. The fragrances of flowers of Anaxagorea brevipes and Anaxagorea dolichocarpa were dominated by esters of aliphatic acids (ethyl 2-methylbutanoate, ethyl 3-methylbutanoate), which were not detected in the other species. Monoterpenes (limonene, p-cymene, alpha-pinene) were the main scent compounds of Duguetia asterotricha, and naphthalene prevailed in the scent of Rollinia insignis flowers. The odors of X. aromatica and Xylopia benthamii flowers were dominated by high amounts of benzenoids (methylbenzoate, 2-phenylethyl alcohol).


Assuntos
Magnoliopsida/química , Terpenos/análise , Animais , Besouros , Ecologia , Cromatografia Gasosa-Espectrometria de Massas , Magnoliopsida/fisiologia , Odorantes , Pólen/fisiologia , América do Sul , Terpenos/metabolismo , Volatilização
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;33(11): 1369-77, Nov. 2000. tab, graf
Artigo em Inglês | LILACS | ID: lil-273214

RESUMO

The effects of transient forebrain ischemia, reperfusion and ischemic preconditioning on rat blood platelet ATP diphosphohydrolase and 5'-nucleotidase activities were evaluated. Adult Wistar rats were submitted to 2 or 10 min of single ischemic episodes, or to 10 min of ischemia 1 day after a 2-min ischemic episode (ischemic preconditioning) by the four-vessel occlusion method. Rats submitted to single ischemic insults were reperfused for 60 min and for 1, 2, 5, 10 and 30 days after ischemia; preconditioned rats were reperfused for 60 min 1 and 2 days after the long ischemic episode. Brain ischemia (2 or 10 min) inhibited ATP and ADP hydrolysis by platelet ATP diphosphohydrolase. On the other hand, AMP hydrolysis by 5'-nucleotidase was increased after 2, but not 10, min of ischemia. Ischemic preconditioning followed by 10 min of ischemia caused activation of both enzymes. Variable periods of reperfusion distinctly affected each experimental group. Enzyme activities returned to control levels in the 2-min group. However, the decrease in ATP diphosphohydrolase activity was maintained up to 30 days of reperfusion after 10-min ischemia. 5'-Nucleotidase activity was decreased 60 min and 1 day following 10-min ischemia; interestingly, enzymatic activity was increased after 2 and 5 days of reperfusion, and returned to control levels after 10 days. Ischemic preconditioning cancelled the effects of 10-min ischemia on the enzymatic activities. These results indicate that brain ischemia and ischemic preconditioning induce peripheral effects on ecto-enzymes from rat platelets involved in nucleotide metabolism. Thus, ATP, ADP and AMP degradation and probably the generation of adenosine in the circulation may be altered, leading to regulation of microthrombus formation since ADP aggregates platelets and adenosine is an inhibitor of platelet aggregation


Assuntos
Animais , Ratos , Masculino , 5'-Nucleotidase/metabolismo , Apirase/metabolismo , Plaquetas/química , Isquemia Encefálica/enzimologia , Análise de Variância , Precondicionamento Isquêmico , Ratos Wistar , Fatores de Tempo
3.
Braz J Med Biol Res ; 33(11): 1369-77, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11050670

RESUMO

The effects of transient forebrain ischemia, reperfusion and ischemic preconditioning on rat blood platelet ATP diphosphohydrolase and 5'-nucleotidase activities were evaluated. Adult Wistar rats were submitted to 2 or 10 min of single ischemic episodes, or to 10 min of ischemia 1 day after a 2-min ischemic episode (ischemic preconditioning) by the four-vessel occlusion method. Rats submitted to single ischemic insults were reperfused for 60 min and for 1, 2, 5, 10 and 30 days after ischemia; preconditioned rats were reperfused for 60 min 1 and 2 days after the long ischemic episode. Brain ischemia (2 or 10 min) inhibited ATP and ADP hydrolysis by platelet ATP diphosphohydrolase. On the other hand, AMP hydrolysis by 5'-nucleotidase was increased after 2, but not 10, min of ischemia. Ischemic preconditioning followed by 10 min of ischemia caused activation of both enzymes. Variable periods of reperfusion distinctly affected each experimental group. Enzyme activities returned to control levels in the 2-min group. However, the decrease in ATP diphosphohydrolase activity was maintained up to 30 days of reperfusion after 10-min ischemia. 5'-Nucleotidase activity was decreased 60 min and 1 day following 10-min ischemia; interestingly, enzymatic activity was increased after 2 and 5 days of reperfusion, and returned to control levels after 10 days. Ischemic preconditioning cancelled the effects of 10-min ischemia on the enzymatic activities. These results indicate that brain ischemia and ischemic preconditioning induce peripheral effects on ecto-enzymes from rat platelets involved in nucleotide metabolism. Thus, ATP, ADP and AMP degradation and probably the generation of adenosine in the circulation may be altered, leading to regulation of microthrombus formation since ADP aggregates platelets and adenosine is an inhibitor of platelet aggregation.


Assuntos
5'-Nucleotidase/metabolismo , Apirase/metabolismo , Plaquetas/química , Isquemia Encefálica/enzimologia , Análise de Variância , Animais , Isquemia Encefálica/sangue , Precondicionamento Isquêmico , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
4.
Braz J Med Biol Res ; 32(10): 1295-302, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10510268

RESUMO

Brain ischemia followed by reperfusion causes neuronal death related to oxidative damage. Furthermore, it has been reported that subjects suffering from ischemic cerebrovascular disorders exhibit changes in circulating platelet aggregation, a characteristic that might be important for their clinical outcome. In the present investigation we studied tert-butyl hydroperoxide-initiated plasma chemiluminescence and thiol content as measures of peripheral oxidative damage in naive and preconditioned rats submitted to forebrain ischemia produced by the 4-vessel occlusion method. Rats were submitted to 2 or 10 min of global transient forebrain ischemia followed by 60 min or 1, 2, 5, 10 or 30 days of reperfusion. Preconditioned rats were submitted to a 10-min ischemic episode 1 day after a 2-min ischemic event (2 + 10 min), followed by 60 min or 1 or 2 days of reperfusion. It has been demonstrated that such preconditioning protects against neuronal death in rats and gerbils submitted to a lethal (10 min) ischemic episode. The results show that both 2 and 10 min of ischemia cause an increase of plasma chemiluminescence when compared to control and sham rats. In the 2-min ischemic group, the effect was not present after reperfusion. In the 10-min ischemic group, the increase was present up to 1 day after recirculation and values returned to control levels after 2 days. However, rats preconditioned to ischemia (2 + 10 min) and reperfusion showed no differences in plasma chemiluminescence when compared to controls. We also analyzed plasma thiol content since it has been described that sulfhydryl (SH) groups significantly contribute to the antioxidant capacity of plasma. There was a significant decrease of plasma thiol content after 2, 10 and 2 + 10 min of ischemia followed by reperfusion when compared to controls. We conclude that ischemia may cause, along with brain oxidative damage and cell death, a peripheral oxidative damage that is reduced by the preconditioning phenomenon.


Assuntos
Ataque Isquêmico Transitório/sangue , Precondicionamento Isquêmico , Estresse Oxidativo , terc-Butil Hidroperóxido/sangue , Animais , Antioxidantes , Morte Celular , Medições Luminescentes , Masculino , Ratos , Ratos Wistar , Reperfusão , Compostos de Sulfidrila/sangue , Fatores de Tempo
5.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;32(10): 1295-302, Oct. 1999. graf
Artigo em Inglês | LILACS | ID: lil-252281

RESUMO

Brain ischemia followed by reperfusion causes neuronal death related to oxidative damage. Furthermore, it has been reported that subjects suffering from ischemic cerebrovascular disorders exhibit changes in circulating platelet aggregation, a characteristic that might be important for their clinical outcome. In the present investigation we studied tert-butyl hydroperoxide-initiated plasma chemiluminescence and thiol content as measures of peripheral oxidative damage in naive and preconditioned rats submitted to forebrain ischemia produced by the 4-vessel occlusion method. Rats were submitted to 2 or 10 min of global transient forebrain ischemia followed by 60 min or 1, 2, 5, 10 or 30 days of reperfusion. Preconditioned rats were submitted to a 10-min ischemic episode 1 day after a 2-min ischemic event (2 + 10 min), followed by 60 min or 1 or 2 days of reperfusion. It has been demonstrated that such preconditioning protects against neuronal death in rats and gerbils submitted to a lethal (10 min) ischemic episode. The results show that both 2 and 10 min of ischemia cause an increase of plasma chemiluminescence when compared to control and sham rats. In the 2-min ischemic group, the effect was not present after reperfusion. In the 10-min ischemic group, the increase was present up to 1 day after recirculation and values returned to control levels after 2 days. However, rats preconditioned to ischemia (2 + 10 min) and reperfusion showed no differences in plasma chemiluminescence when compared to controls. We also analyzed plasma thiol content since it has been described that sulfhydryl (SH) groups significantly contribute to the antioxidant capacity of plasma. There was a significant decrease of plasma thiol content after 2, 10 and 2 + 10 min of ischemia followed by reperfusion when compared to controls. We conclude that ischemia may cause, along with brain oxidative damage and cell death, a peripheral oxidative damage that is reduced by the preconditioning phenomenon


Assuntos
Ratos , Animais , Masculino , Isquemia Encefálica/sangue , Precondicionamento Isquêmico , Estresse Oxidativo , Compostos de Sulfidrila/sangue , terc-Butil Hidroperóxido/sangue , Antioxidantes , Isquemia Encefálica/metabolismo , Morte Celular , Medições Luminescentes , Ratos Wistar , Reperfusão , Compostos de Sulfidrila/metabolismo , terc-Butil Hidroperóxido/metabolismo , Fatores de Tempo
8.
Biochem Mol Biol Int ; 47(3): 473-8, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10204084

RESUMO

This study shows the effect of transient global cerebral ischemia (ISC) on hippocampal acetylcholinesterase (AChE) activity. Naive adult Wistar rats received either a brief (2 min) or a long (10 min) ischemic episode by the four-vessel occlusion method. Pre-conditioned rats received double ischemia: a 10 min episode inflicted 24 h after a 2 min event, a condition known to confer cytoprotection to CA1 pyramidal cells of hippocampus. 2 min of ischemia caused an increase in acetylcholinesterase activity both immediately and 30 min after the episode, however enzyme activity was significantly decreased after 24 h of reperfusion. 10 min of ischemia caused an increase in activity both 60 min and 24 h after ischemia. Conversely, pre-conditioned rats displayed lower activity both immediately and 60 min after ischemia. Our results suggest that: a) neuronal death, that follows 10 min of ischemia, is associated to a late increase in acetylcholinesterase activity; b) pre-conditioning is related to diminished acetylcholinesterase activity. This is in agreement with previous evidence that acetylcholinesterase inhibition and maintenance of acetylcholine levels are beneficial for cell surviving after cerebral ischemia.


Assuntos
Acetilcolinesterase/metabolismo , Isquemia Encefálica/metabolismo , Hipocampo/enzimologia , Acetilcolina/metabolismo , Adaptação Fisiológica , Animais , Sobrevivência Celular , Ratos , Ratos Wistar , Reperfusão , Fatores de Tempo
9.
J Stroke Cerebrovasc Dis ; 7(5): 281-6, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-17895102

RESUMO

Adenosine, an endogenous neuroprotective agent, can be produced in the synaptic cleft from adenosine triphosphate (ATP) hydrolysis via the concerted action of two enzymes: ATP diphosphohydrolase and 5'-nucleotidase. The aim of the present study was to investigate such enzymatic activities in the hippocampus of rats subjected to single (2- or 10-minute) or double (2+10 minute, with a 24-hour interval in between, named preconditioned group) ischemic episodes. Ischemia was produced by four-vessel occlusion method. Histological analysis showed no cell death in 2-minute ischemia, and up to 90% of pyramidal CA(1) cell loss in the 10-minute ischemic group. As predicted, double ischemic rats displayed a significant cytoprotective effect (around 60%). Preconditioned rats presented a delayed enhancement in ATP diphosphohydrolase activity (for ATP and adenosine diphosphate hydrolysis) after 48 hours of reperfusion. 5'-nucleotidase activity was increased immediately after ischemic insult (for all groups) and after a late reperfusion period (48 hours). We suggest that preconditioning causes delayed changes in enzymatic activities that would conceivably lead to increased adenosine production. This effect could be related to cytoprotection seen in preconditioned rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA