Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(8): eadg8662, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812327

RESUMO

A combination of Notch-mediated lateral inhibition, mechanical forces, and differential adhesion generates a single row of alternating inner hair and supporting cells.


Assuntos
Células Ciliadas Auditivas Internas , Proteínas de Membrana , Diferenciação Celular , Receptores Notch
2.
Sci Adv ; 7(4)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523928

RESUMO

Hearing involves a stereotyped neural network communicating cochlea and brain. How this sensorineural circuit assembles is largely unknown. The cochlea houses two types of mechanosensory hair cells differing in function (sound transmission versus amplification) and location (inner versus outer compartments). Inner (IHCs) and outer hair cells (OHCs) are each innervated by a distinct pair of afferent and efferent neurons: IHCs are contacted by type I afferents receiving axodendritic efferent contacts; OHCs are contacted by type II afferents and axosomatically terminating efferents. Using an Insm1 mouse mutant with IHCs in the position of OHCs, we discover a hierarchical sequence of instructions in which first IHCs attract, and OHCs repel, type I afferents; second, type II afferents innervate hair cells not contacted by type I afferents; and last, afferent fiber type determines if and how efferents innervate, whether axodendritically on the afferent, axosomatically on the hair cell, or not at all.

3.
Elife ; 72018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30412049

RESUMO

During development, transcriptional complexes at enhancers regulate gene expression in complex spatiotemporal patterns. To achieve robust expression without spurious activation, the affinity and specificity of transcription factor-DNA interactions must be precisely balanced. Protein-protein interactions among transcription factors are also critical, yet how their affinities impact enhancer output is not understood. The Drosophila transcription factor Yan provides a well-suited model to address this, as its function depends on the coordinated activities of two independent and essential domains: the DNA-binding ETS domain and the self-associating SAM domain. To explore how protein-protein affinity influences Yan function, we engineered mutants that increase SAM affinity over four orders of magnitude. This produced a dramatic subcellular redistribution of Yan into punctate structures, reduced repressive output and compromised survival. Cell-type specification and genetic interaction defects suggest distinct requirements for polymerization in different regulatory decisions. We conclude that tuned protein-protein interactions enable the dynamic spectrum of complexes that are required for proper regulation.


Assuntos
DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Olho/metabolismo , Polimerização , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Animais , Linhagem da Célula , Núcleo Celular/metabolismo , Modelos Biológicos , Mutagênese/genética , Mutação/genética , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/metabolismo , Agregados Proteicos , Ligação Proteica , Transdução de Sinais , Transcrição Gênica
4.
Development ; 145(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29848501

RESUMO

The acquisition of cellular identity during development depends on precise spatiotemporal regulation of gene expression, with combinatorial interactions between transcription factors, accessory proteins and the basal transcription machinery together translating complex signaling inputs into appropriate gene expression outputs. The opposing repressive and activating inputs of the Drosophila ETS family transcription factors Yan and Pointed orchestrate numerous cell fate transitions downstream of receptor tyrosine kinase signaling, providing one of the premier systems for studying this process. Current models describe the differentiative transition as a switch from Yan-mediated repression to Pointed-mediated activation of common target genes. We describe here a new layer of regulation whereby Yan and Pointed co-occupy regulatory elements to repress gene expression in a coordinated manner, with Pointed being unexpectedly required for the genome-wide occupancy of both Yan and the co-repressor Groucho. Using even skipped as a test-case, synergistic genetic interactions between Pointed, Groucho, Yan and components of the RNA polymerase II pausing machinery suggest that Pointed integrates multiple scales of repressive regulation to confer robustness. We speculate that this mechanism may be used broadly to fine-tune the expression of many genes crucial for development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas do Olho/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética
5.
Genes Dev ; 32(5-6): 389-401, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29535190

RESUMO

Cis-regulatory modules (CRMs) are defined by unique combinations of transcription factor-binding sites. Emerging evidence suggests that the number, affinity, and organization of sites play important roles in regulating enhancer output and, ultimately, gene expression. Here, we investigate how the cis-regulatory logic of a tissue-specific CRM responsible for even-skipped (eve) induction during cardiogenesis organizes the competing inputs of two E-twenty-six (ETS) members: the activator Pointed (Pnt) and the repressor Yan. Using a combination of reporter gene assays and CRISPR-Cas9 gene editing, we suggest that Yan and Pnt have distinct syntax preferences. Not only does Yan prefer high-affinity sites, but an overlapping pair of such sites is necessary and sufficient for Yan to tune Eve expression levels in newly specified cardioblasts and block ectopic Eve induction and cell fate specification in surrounding progenitors. Mechanistically, the efficient Yan recruitment promoted by this high-affinity ETS supersite not only biases Yan-Pnt competition at the specific CRM but also organizes Yan-repressive complexes in three dimensions across the eve locus. Taken together, our results uncover a novel mechanism by which differential interpretation of CRM syntax by a competing repressor-activator pair can confer both specificity and robustness to developmental transitions.


Assuntos
Diferenciação Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Miocárdio/citologia , Proteínas Repressoras/metabolismo , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Embrião não Mamífero , Elementos Facilitadores Genéticos/genética , Proteínas do Olho/química , Proteínas do Olho/genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Organogênese/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Transporte Proteico , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Dev Biol ; 385(2): 263-78, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24240101

RESUMO

The biochemical regulatory network downstream of receptor tyrosine kinase (RTK) signaling is controlled by two opposing ETS family members: the transcriptional activator Pointed (Pnt) and the transcriptional repressor Yan. A bistable switch model has been invoked to explain how pathway activation can drive differentiation by shifting the system from a high-Yan/low-Pnt activity state to a low-Yan/high-Pnt activity state. Although the model explains yan and pnt loss-of-function phenotypes in several different cell types, how Yan and Pointed protein expression dynamics contribute to these and other developmental transitions remains poorly understood. Toward this goal we have used a functional GFP-tagged Pnt transgene (Pnt-GFP) to perform a comparative study of Yan and Pnt protein expression throughout Drosophila development. Consistent with the prevailing model of the Pnt-Yan network, we found numerous instances where Pnt-GFP and Yan adopt a mutually exclusive pattern of expression. However we also observed many examples of co-expression. While some co-expression occurred in cells where RTK signaling is presumed low, other co-expression occurred in cells with high RTK signaling. The instances of co-expressed Yan and Pnt-GFP in tissues with high RTK signaling cannot be explained by the current model, and thus they provide important contexts for future investigation of how context-specific differences in RTK signaling, network topology, or responsiveness to other signaling inputs, affect the transcriptional response.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas do Olho/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Drosophila melanogaster/embriologia , Proteínas de Fluorescência Verde/genética
8.
Genes Dev ; 27(21): 2293-8, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24186975

RESUMO

Long-range integration of transcriptional inputs is critical for gene expression, yet the mechanisms remain poorly understood. We investigated the molecular determinants that confer fidelity to expression of the heart identity gene even-skipped (eve). Targeted deletion of regions bound by the repressor Yan defined two novel enhancers that contribute repressive inputs to stabilize tissue-specific output from a third enhancer. Deletion of any individual enhancer reduced Yan occupancy at the other elements, impacting eve expression, cell fate specification, and cardiac function. These long-range interactions may be stabilized by three-dimensional chromatin contacts that we detected between the elements. Our work provides a new paradigm for chromatin-level integration of general repressive inputs with specific patterning information to achieve robust gene expression.


Assuntos
Cromatina/química , Cromatina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Animais , Drosophila melanogaster/química , Drosophila melanogaster/crescimento & desenvolvimento , Elementos Facilitadores Genéticos/genética , Proteínas do Olho/genética , Coração/crescimento & desenvolvimento , Heterozigoto , Ligação Proteica , Proteínas Repressoras/genética , Deleção de Sequência
9.
Fly (Austin) ; 7(2): 92-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23575308

RESUMO

Developmental programs are driven by transcription factors that coordinate precise patterns of gene expression. While recent publications have described the importance of coordinated action of transcriptional activators at multiple cis-regulatory modules or enhancers, the contribution of sequence-specific repressors to overall regulation and robustness of gene expression has been difficult to ascertain. The Ets transcriptional repressor Yan functions as part of a conserved network downstream of receptor tyrosine kinase (RTK) signaling in Drosophila. This network displays switch-like responsiveness to RTK signaling, with the transition from a high-Yan to a low-Yan state induced by mitogen-activated protein kinase (MAPK)-mediated phosphorylation and inactivation of Yan. The ability of Yan to self-associate through a conserved sterile α motif (SAM) is essential for Yan's repressive ability, and has been suggested to allow spreading of Yan repressive complexes along chromatin. Such a mechanism has the potential to confer both signal responsiveness and robustness to the Yan network. To explore this spreading model, we compared the genome-wide chromatin binding profiles of wild-type vs. monomeric Yan. Consistent with the starting prediction, we found that wild type chromatin occupancy at genes encoding crucial developmental regulators and core signaling pathway components occurs as clusters of peaks that "spread" over multiple kilobases. However monomeric Yan, which fails to rescue a yan null mutation and displays significantly impaired repressive ability, exhibits a broadly similar occupancy profile to that of wild-type Yan, with multi-kilobase binding at developmentally important genes. This unexpected result suggests that SAM-mediated self-association does not mediate Yan recruitment to DNA or chromatin spreading, and raises the questions of why developmentally important genes require extensive Yan chromatin occupancy and how SAM-mediated polymerization might contribute to active repressive mechanisms in this context. In this Extra View article we discuss potential mechanisms by which Yan self-association and extended chromatin occupancy may contribute to robust regulation of gene expression.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila/genética , Proteínas do Olho/fisiologia , Regulação da Expressão Gênica , Proteínas Repressoras/fisiologia , Animais , Cromossomos de Insetos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Modelos Genéticos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
10.
Genetics ; 193(2): 633-49, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23172856

RESUMO

ETS family transcription factors are evolutionarily conserved downstream effectors of Ras/MAPK signaling with critical roles in development and cancer. In Drosophila, the ETS repressor Yan regulates cell proliferation and differentiation in a variety of tissues; however, the mechanisms of Yan-mediated repression are not well understood and only a few direct target genes have been identified. Yan, like its human ortholog TEL1, self-associates through an N-terminal sterile α-motif (SAM), leading to speculation that Yan/TEL1 polymers may spread along chromatin to form large repressive domains. To test this hypothesis, we created a monomeric form of Yan by recombineering a point mutation that blocks SAM-mediated self-association into the yan genomic locus and compared its genome-wide chromatin occupancy profile to that of endogenous wild-type Yan. Consistent with the spreading model predictions, wild-type Yan-bound regions span multiple kilobases. Extended occupancy patterns appear most prominent at genes encoding crucial developmental regulators and signaling molecules and are highly conserved between Drosophila melanogaster and D. virilis, suggesting functional relevance. Surprisingly, although occupancy is reduced, the Yan monomer still makes extensive multikilobase contacts with chromatin, with an overall pattern similar to that of wild-type Yan. Despite its near-normal chromatin recruitment, the repressive function of the Yan monomer is significantly impaired, as evidenced by elevated target gene expression and failure to rescue a yan null mutation. Together our data argue that SAM-mediated polymerization contributes to the functional output of the active Yan repressive complexes that assemble across extended stretches of chromatin, but does not directly mediate recruitment to DNA or chromatin spreading.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas do Olho/metabolismo , Multimerização Proteica , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Animais , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas do Olho/química , Proteínas do Olho/genética , Expressão Gênica , Genoma de Inseto , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética
11.
IUBMB Life ; 62(7): 503-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20552641

RESUMO

Macroautophagy, here called autophagy, is literally a "self-eating" catabolic process, which is evolutionarily conserved. Autophagy is initiated by cellular stress pathways, resulting in the sequestration or engulfment of cytosolic proteins, membranes, and organelles in a double membrane structure that fuses with endosomes and lysosomes, thus delivering the sequestered material for degradation. Autophagy is implicated in a number of human diseases, many of which can either be characterized by an imbalance in protein, organelle, or cellular homeostasis, ultimately resulting in an alteration of the autophagic response. Here, we will review the recent progress made in understanding the induction of autophagy, with emphasis on the contributions from our laboratory.


Assuntos
Autofagia/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/fisiologia , Modelos Biológicos , Complexos Multiproteicos , Fagossomos/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/fisiologia
12.
FEBS Lett ; 584(7): 1319-26, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20083107

RESUMO

Autophagy is a lysosomal degradation pathway that is essential for cellular homeostasis. Identification of more than 30 autophagy related proteins including a multi-spanning membrane protein, Atg9, has increased our understanding of the molecular mechanisms involved in autophagy. Atg9 is required for autophagy in several eukaryotic organisms although its function is unknown. Recently, we identified a novel interacting partner of mAtg9, p38 MAPK interacting protein, p38IP. We summarise recent data on the role of Atg9 trafficking in yeast and mammalian autophagy and discuss the role of p38IP and p38 MAPK in regulation of mAtg9 trafficking and autophagy.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Humanos , Transporte Proteico , Fatores de Transcrição/metabolismo
14.
EMBO J ; 29(1): 27-40, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19893488

RESUMO

Autophagy, a lysosomal degradation pathway, is essential for homeostasis, development, neurological diseases, and cancer. Regulation of autophagy in human disease is not well understood. Atg9 is a transmembrane protein required for autophagy, and it has been proposed that trafficking of Atg9 may regulate autophagy. Mammalian Atg9 traffics between the TGN and endosomes in basal conditions, and newly formed autophagosomes in response to signals inducing autophagy. We identified p38IP as a new mAtg9 interactor and showed that this interaction is regulated by p38alpha MAPK. p38IP is required for starvation-induced mAtg9 trafficking and autophagosome formation. Manipulation of p38IP and p38alpha alters mAtg9 localization, suggesting p38alpha regulates, through p38IP, the starvation-induced mAtg9 trafficking to forming autophagosomes. Furthermore, we show that p38alpha is a negative regulator of both basal autophagy and starvation-induced autophagy, and suggest that this regulation may be through a direct competition with mAtg9 for binding to p38IP. Our results provide evidence for a link between the MAPK pathway and the control of autophagy through mAtg9 and p38IP.


Assuntos
Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Relacionadas à Autofagia , Sequência de Bases , Linhagem Celular , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases , Membranas/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/genética , Modelos Biológicos , Fagossomos/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Rede trans-Golgi/metabolismo
15.
Autophagy ; 3(1): 54-6, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17102588

RESUMO

The molecular mechanisms of autophagy have been best characterized in the yeast Saccharomyces cerevisiae, where a number of proteins have been identified to be essential for this degradative pathway. ATG (autophagy-related) proteins(1) localize to a unique compartment, the pre-autophagosomal structure (PAS). Isolation membranes are suggested to originate from the PAS, enwrapping cytoplasmic components to form a double membrane autophagosome, which then fuses with the vacuole. Although many Atg proteins have been identified, the source of the PAS membrane in yeast is unknown. Identification of the source of the PAS in yeast has been hindered due to the transient association of Atg proteins with forming autophagosomes.(2) Likewise, in mammalian cells, it is not known if a PAS equivalent exists or if the formation of autophagosomes occurs from numerous membrane sources. The identification of stably associated markers would allow us to address this question further. Thus, characterization of the only transmembrane autophagy protein so far identified, Atg9, may aid in the search for the source of the PAS. Recent data from our lab suggests that mammalian Atg9 (mAtg9) traffics between the Golgi and endosomes, and suggests an involvement of the Golgi complex in the autophagic pathway.(3) Here we address the implications of our model with regard to membrane trafficking events in mammalian cells after starvation.


Assuntos
Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Humanos , Modelos Biológicos , Transporte Proteico , Inanição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...