Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 171751, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38503391

RESUMO

Soil respiration, or CO2 efflux from soil, is a crucial component of the terrestrial carbon cycle in climate models. Contrastingly, many dryland soils absorb atmospheric CO2 at night, but the exact mechanisms driving this uptake are actively debated. Here we used a mechanistic model with heuristic approaches to unravel the underlying processes of the observed patterns of soil-atmosphere CO2 fluxes. We show that the temperature drop during nighttime is the main driver of CO2 uptake by increasing CO2 solubility and local water pH of a thin water film on soil particle surfaces, providing favourable conditions for carbonate precipitation. Our data demonstrate that the nocturnal inorganic carbon absorption is a common soil process, but often offset by biological CO2 production. The uptake rates can be impacted by different successional stages of biocrusts that consume or produce CO2 and modify the pH of the soil water film, which can be maintained by non-rainfall water inputs, such as pore space condensation. Annual estimates of nocturnal carbon uptake, based on in situ continuous measurements at the soil level in drylands are still very scarce, but fluxes of up to several tens of g C m-2 y-1 have been reported, potentially accounting for a considerable fraction of the global residual terrestrial carbon sink.

2.
Sci Total Environ ; 913: 169745, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38163611

RESUMO

During durst storms, also biological material is transported from arid areas such as the Sahara Desert. In the present work, rain samples containing significant amounts of mineral dust have been collected in Granada during different red rain episodes. Biological features (bacteria, biofilm, pollen grain and fungal spore) as well as size-particle distribution and mineralogical composition were studied by SEM. Nanobacteria were observed for the first time in red rain samples. A preliminary metabarcoding analysis was performed on three red rain samples. Here, Bacillota made up 18 % and Pseudomonadota 23 % of the whole prokaryotic community. The fungal community was characterized by a high abundance of Ascomycota and, dependent on the origin, the presence of Chytridiomycota. By means of 16S rRNA sequencing, 18 cultivable microorganisms were identified. In general, members of the phyla Pseudomonadota and Bacillota made up the majority of taxa. Some species, such as Peribacillus frigoritolerans and Bacillus halotolerans were isolated during three different red rain episodes. Generally, red rain carries a wide variety of microorganisms, being their ecosystem and health effects largely unknown.


Assuntos
Poeira , Ecossistema , Poeira/análise , Espanha , RNA Ribossômico 16S/genética , Chuva , África do Norte
3.
Int J Comput Dent ; 0(0): 0, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37350409

RESUMO

AIM: The digital workflow used to manufacture an adjusted oral splint will be demonstrated in a patient case. MATERIALS AND METHODS: A 25-year-old female patient presented for management of her bruxism. Therefore, an adjusted oral splint was manufactured. A computer-aided motion analysis of the patient was conducted (JMA Optic, Amann Girrbach) and full-arch scans of the maxilla and mandible, a biocopy of the maxilla with bite fork as well as buccal scans of the centric jaw relation (Primescan, Dentsply Sirona). The jaw relation was determined beforehand by ballistic closing on a chairside fabricated anterior jig. The digital construction of a Michigan splint took place in the laboratory. The design was nested and milled from a polymethyl methacrylate (PMMA)-containing blank (CLEARsplint Disc, Astron Dental Corporation). RESULT: The oral splint was inserted into the patient's mouth and checked to ensure a tensionfree fit. The static and dynamic contact relationship was checked. During the follow-up visit, the patient reported an improvement in tension in the masticatory muscles. CONCLUSION: The procedure described allows for an adjusted oral splint to be manufactured in a purely digital workflow.

4.
New Phytol ; 237(5): 1495-1504, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36511294

RESUMO

Nonvascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but the extent to which this will affect the associated ecosystem functions and services is highly uncertain. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and world-wide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on: (1) potential for acclimation; (2) response to elevated CO2 ; (3) role of the microbiome; and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multimethod laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration on NVP research will be essential.


Assuntos
Briófitas , Líquens , Ecossistema , Mudança Climática , Plantas , Briófitas/fisiologia , Líquens/fisiologia
5.
Environ Sci Technol ; 56(16): 11865-11877, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35929951

RESUMO

Biocrusts covering drylands account for major fractions of terrestrial biological nitrogen fixation and release large amounts of gaseous reactive nitrogen (Nr) as nitrous acid (HONO) and nitric oxide (NO). Recent investigations suggested that aerobic and anaerobic microbial nitrogen transformations occur simultaneously upon desiccation of biocrusts, but the spatio-temporal distribution of seemingly contradictory processes remained unclear. Here, we explore small-scale gradients in chemical concentrations related to structural characteristics and organism distribution. X-ray microtomography and fluorescence microscopy revealed mixed pore size structures, where photoautotrophs and cyanobacterial polysaccharides clustered irregularly in the uppermost millimeter. Microsensor measurements showed strong gradients of pH, oxygen, and nitrite, nitrate, and ammonium ion concentrations at micrometer scales in both vertical and lateral directions. Initial oxygen saturation was mostly low (∼30%) at full water holding capacity, suggesting widely anoxic conditions, and increased rapidly upon desiccation. Nitrite concentrations (∼6 to 800 µM) and pH values (∼6.5 to 9.5) were highest around 70% WHC. During further desiccation they decreased, while emissions of HONO and NO increased, reaching maximum values around 20% WHC. Our results illustrate simultaneous, spatially separated aerobic and anaerobic nitrogen transformations, which are critical for Nr emissions, but might be impacted by future global change and land management.


Assuntos
Cianobactérias , Solo , Óxido Nítrico , Nitritos , Nitrogênio/análise , Ácido Nitroso/química , Óxido Nitroso/análise , Solo/química
6.
Biol Rev Camb Philos Soc ; 97(5): 1768-1785, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35584903

RESUMO

Studies of biological soil crusts (biocrusts) have proliferated over the last few decades. The biocrust literature has broadened, with more studies assessing and describing the function of a variety of biocrust communities in a broad range of biomes and habitats and across a large spectrum of disciplines, and also by the incorporation of biocrusts into global perspectives and biogeochemical models. As the number of biocrust researchers increases, along with the scope of soil communities defined as 'biocrust', it is worth asking whether we all share a clear, universal, and fully articulated definition of what constitutes a biocrust. In this review, we synthesize the literature with the views of new and experienced biocrust researchers, to provide a refined and fully elaborated definition of biocrusts. In doing so, we illustrate the ecological relevance and ecosystem services provided by them. We demonstrate that biocrusts are defined by four distinct elements: physical structure, functional characteristics, habitat, and taxonomic composition. We describe outgroups, which have some, but not all, of the characteristics necessary to be fully consistent with our definition and thus would not be considered biocrusts. We also summarize the wide variety of different types of communities that fall under our definition of biocrusts, in the process of highlighting their global distribution. Finally, we suggest the universal use of the Belnap, Büdel & Lange definition, with minor modifications: Biological soil crusts (biocrusts) result from an intimate association between soil particles and differing proportions of photoautotrophic (e.g. cyanobacteria, algae, lichens, bryophytes) and heterotrophic (e.g. bacteria, fungi, archaea) organisms, which live within, or immediately on top of, the uppermost millimetres of soil. Soil particles are aggregated through the presence and activity of these often extremotolerant biota that desiccate regularly, and the resultant living crust covers the surface of the ground as a coherent layer. With this detailed definition of biocrusts, illustrating their ecological functions and widespread distribution, we hope to stimulate interest in biocrust research and inform various stakeholders (e.g. land managers, land users) on their overall importance to ecosystem and Earth system functioning.


Assuntos
Briófitas , Cianobactérias , Ecossistema , Solo/química , Microbiologia do Solo
7.
Environ Sci Technol ; 56(4): 2204-2212, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104400

RESUMO

Nitrous acid (HONO) is an important component of the global nitrogen cycle and can regulate the atmospheric oxidative capacity. Soil is an important source of HONO. [HONO]*, the equilibrium gas-phase concentration over the aqueous solution of nitrous acid in the soil, has been suggested as a key parameter for quantifying soil fluxes of HONO. However, [HONO]* has not yet been well-validated and quantified. Here, we present a method to retrieve [HONO]* by conducting controlled dynamic chamber experiments with soil samples applied with different HONO concentrations at the chamber inlet. We show a bi-directional soil-atmosphere exchange of HONO and confirm the existence of [HONO]* over soil: when [HONO]* is higher than the atmospheric HONO concentration, HONO will be released from soil; otherwise, HONO will be deposited. We demonstrate that [HONO]* is a soil characteristic, which is independent of HONO concentrations in the chamber but varies with different soil water contents. We illustrate the robustness of using [HONO]* for quantifying soil fluxes of HONO, whereas the laboratory-determined chamber HONO fluxes can largely deviate from those in the real world for the same soil sample. This work advances the understanding of the soil-atmosphere exchange of HONO and the evaluation of its impact on the atmospheric oxidizing capacity.


Assuntos
Ácido Nitroso , Solo , Atmosfera , Ciclo do Nitrogênio , Microbiologia do Solo , Água
8.
Endocrinol Diabetes Nutr (Engl Ed) ; 68(6): 381-388, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34742471

RESUMO

BACKGROUND: Inferior petrosal sinus sampling (IPSS) is indicated in the diagnosis of adrenocorticotropic hormone (ACTH)-dependent Cushing's syndrome (CS), especially when the results of the initial diagnostic tests are discordant. OBJECTIVE: To describe the patients who underwent this invasive functional test in a tertiary hospital. METHODS: This was an observational study of a retrospective cohort of patients with ACTH-dependent CS and IPSS between 2004 and 2019. We determined their epidemiological, hormonal, radiological and functional characteristics, and evaluated their diagnostic capacity and optimal cut-off points to differentiate between Cushing's disease (CD) and ectopic Cushing's syndrome (ECS). RESULTS: 23 patients were evaluated, of which 65.2% were women with the average age of 42 (36-62) years. ACTH secretion of pituitary origin was evident in 82.6% of the patients and of ectopic origin in 17.4%. Plasma cortisol, urinary free cortisol, and ACTH levels were higher in patients with ECS. Regarding IPSS, the baseline central/peripheral ACTH gradient detected 89.5% of patients with CD and after stimulation with CRH, 100%. The optimal cut-off points in the diagnosis of CD were 2.06 at baseline and 2.49 after CRH stimulation. CONCLUSION: IPSS with CRH stimulation is a test with a high diagnostic accuracy for correctly classifying patients with CD and ECS. The cut-off points of the gradients may be different from the classic ones. Therefore, we recommend that each center perform its own evaluation.


Assuntos
Hormônio Liberador da Corticotropina/uso terapêutico , Síndrome de Cushing , Amostragem do Seio Petroso , Hormônio Adrenocorticotrópico , Adulto , Síndrome de Cushing/diagnóstico , Feminino , Humanos , Hidrocortisona , Masculino , Pessoa de Meia-Idade , Hipersecreção Hipofisária de ACTH/diagnóstico , Estudos Retrospectivos , Centros de Atenção Terciária
9.
Sci Total Environ ; 760: 144092, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341626

RESUMO

The Amazon rainforest is the world's largest tropical forest, and this biome may be a significant contributor to primary biological aerosol (PBA) emissions on a global scale. These aerosols also play a pivotal role in modulating ecosystem dynamics, dispersing biological material over geographic barriers and influencing climate through radiation absorption, light scattering, or acting as cloud condensation nuclei. Despite their importance, there are limited studies investigating the effect of environmental variables on the bioaerosol composition in the Amazon rainforest. Here we present a 16S rRNA gene-based amplicon sequencing approach to investigate the bacterial microbiome in aerosols of the Amazon rainforest during distinct seasons and at different heights above the ground. Our data revealed that seasonal changes in temperature, relative humidity, and precipitation are the primary drivers of compositional changes in the Amazon rainforest aerosol microbiome. Interestingly, no significant differences were observed in the bacterial community composition of aerosols collected at ground and canopy levels. The core airborne bacterial families present in Amazon aerosol were Enterobacteriaceae, Beijerinckiaceae, Polyangiaceae, Bacillaceae and Ktedonobacteraceae. By correlating the bacterial taxa identified in the aerosol with literature data, we speculate that the phyllosphere may be one possible source of airborne bacteria in the Amazon rainforest. Results of this study indicate that the aerosol microbiota of the Amazon Rainforest are fairly diverse and principally impacted by seasonal changes in temperature and humidity.


Assuntos
Microbiota , Floresta Úmida , Aerossóis , Florestas , Humanos , RNA Ribossômico 16S/genética
10.
Glob Chang Biol ; 26(10): 6003-6014, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32729653

RESUMO

The capture and use of water are critically important in drylands, which collectively constitute Earth's largest biome. Drylands will likely experience lower and more unreliable rainfall as climatic conditions change over the next century. Dryland soils support a rich community of microphytic organisms (biocrusts), which are critically important because they regulate the delivery and retention of water. Yet despite their hydrological significance, a global synthesis of their effects on hydrology is lacking. We synthesized 2,997 observations from 109 publications to explore how biocrusts affected five hydrological processes (times to ponding and runoff, early [sorptivity] and final [infiltration] stages of water flow into soil, and the rate or volume of runoff) and two hydrological outcomes (moisture storage, sediment production). We found that increasing biocrust cover reduced the time for water to pond on the surface (-40%) and commence runoff (-33%), and reduced infiltration (-34%) and sediment production (-68%). Greater biocrust cover had no significant effect on sorptivity or runoff rate/amount, but increased moisture storage (+14%). Infiltration declined most (-56%) at fine scales, and moisture storage was greatest (+36%) at large scales. Effects of biocrust type (cyanobacteria, lichen, moss, mixed), soil texture (sand, loam, clay), and climatic zone (arid, semiarid, dry subhumid) were nuanced. Our synthesis provides novel insights into the magnitude, processes, and contexts of biocrust effects in drylands. This information is critical to improve our capacity to manage dwindling dryland water supplies as Earth becomes hotter and drier.


Assuntos
Briófitas , Água , Mudança Climática , Ecossistema , Solo , Microbiologia do Solo
11.
Front Microbiol ; 11: 577922, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469449

RESUMO

Biological soil crusts (biocrusts) are a complex community of algae, cyanobacteria, lichens, bryophytes, and assorted bacteria, fungi, archaea, and bacteriophages that colonize the soil surface. Biocrusts are particularly common in drylands and are found in arid and semiarid ecosystems worldwide. While diminutive in size, biocrusts often cover large terrestrial areas, provide numerous ecosystem benefits, enhance biodiversity, and are found in multiple configurations and assemblages across different climate and disturbance regimes. Biocrusts have been a focus of many ecologists, especially those working in semiarid and arid lands, as biocrusts are foundational community members, play fundamental roles in ecosystem processes, and offer rare opportunities to study biological interactions at small and large spatial scales. Due to these same characteristics, biocrusts have the potential to serve as an excellent teaching tool. The purpose of this paper is to demonstrate the utility of biocrust communities as a model system in science education. Functioning as portable, dynamic mini ecosystems, biocrusts can be used to teach about organisms, biodiversity, biotic interactions, abiotic controls, ecosystem processes, and even global change, and can be easy to use in nearly every classroom setup. For example, education principles, such as evolution and adaptation to stress, or structure and function (patterns and processes) can be applied by bringing biocrusts into the classroom as a teaching tool. In addition, discussing the utility of biocrusts in the classroom - including theory, hypothesis testing, experimentation, and hands-on learning - this document also provides tips and resources for developing education tools and activities geared toward impactful learning.

12.
Sci Rep ; 9(1): 6468, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015576

RESUMO

Biological soil crusts (biocrusts) occur within drylands throughout the world, covering ~12% of the global terrestrial soil surface. Their occurrence in the deserts of the Arabian Peninsula has rarely been reported and their spatial distribution, diversity, and microbial composition remained largely unexplored. We investigated biocrusts at six different locations in the coastal and central deserts of Oman. The biocrust types were characterized, and the bacterial and fungal community compositions of biocrusts and uncrusted soils were analysed by amplicon sequencing. The results were interpreted based on the environmental parameters of the different sites. Whereas at lowland sites, mainly cyanobacteria-dominated biocrusts were observed, both cyanobacteria- and lichen-dominated biocrusts occurred at mountain sites. The majority of bacterial sequences (32-83% of total sequences) belonged to Actinobacteria, Cyanobacteria, Alphaproteobacteria, and Bacteroidetes, whereas fungal sequences belonged to Ascomycota, Basidiomycota, and Chytridiomycota (>95%). With biocrust development, a notable increase in cyanobacterial and decrease in actinobacterial proportions was observed for cyanobacteria-dominated crusts. In coastal areas, where salinity is high, biocrusts were replaced by a unique marine mat-like microbial community, dominated by halotolerant taxa. Redundancy analysis revealed a significant contribution of soil texture, cover type, carbon content, and elevation to the variations in bacterial and fungal communities. Multivariate analysis placed microbial communities in significantly separated clusters based on their carbon content, elevation and electrical conductivity. We conclude that Oman hosts a variety of cyanobacteria- and lichen-dominated crusts with their bacterial and fungal communities being largely dictated by soil properties and environmental parameters.


Assuntos
Bactérias , Biodiversidade , Clima Desértico , Fungos , Micobioma , Microbiologia do Solo , Solo , Animais , Bactérias/classificação , Bactérias/genética , Fungos/classificação , Fungos/genética , Omã
13.
ISME J ; 13(7): 1688-1699, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30833686

RESUMO

Nitrous acid (HONO) is a precursor of the hydroxyl radical (OH), a key oxidant in the degradation of most air pollutants. Field measurements indicate a large unknown source of HONO during the day time. Release of nitrous acid (HONO) from soil has been suggested as a major source of atmospheric HONO. We hypothesize that nitrite produced by biological nitrate reduction in oxygen-limited microzones in wet soils is a source of such HONO. Indeed, we found that various contrasting soil samples emitted HONO at high water-holding capacity (75-140%), demonstrating this to be a widespread phenomenon. Supplemental nitrate stimulated HONO emissions, whereas ethanol (70% v/v) treatment to minimize microbial activities reduced HONO emissions by 80%, suggesting that nitrate-dependent biotic processes are the sources of HONO. High-throughput Illumina sequencing of 16S rRNA as well as functional gene transcripts associated with nitrate and nitrite reduction indicated that HONO emissions from soil samples were associated with nitrate reduction activities of diverse Proteobacteria. Incubation of pure cultures of bacterial nitrate reducers and gene-expression analyses, as well as the analyses of mutant strains deficient in nitrite reductases, showed positive correlations of HONO emissions with the capability of microbes to reduce nitrate to nitrite. Thus, we suggest biological nitrate reduction in oxygen-limited microzones as a hitherto unknown source of atmospheric HONO, affecting biogeochemical nitrogen cycling, atmospheric chemistry, and global modeling.


Assuntos
Bactérias/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Ácido Nitroso/metabolismo , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Nitratos/análise , Nitritos/análise , Ciclo do Nitrogênio , Oxirredução , Água/análise , Água/metabolismo
14.
J Vis Exp ; (154)2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31905190

RESUMO

Quantifying temperature and moisture at the soil surface is essential for understanding how soil surface biota respond to changes in the environment. However, at the soil surface these variables are highly dynamic and standard sensors do not explicitly measure temperature or moisture in the upper few millimeters of the soil profile. This paper describes methods for manufacturing simple, inexpensive sensors that simultaneously measure the temperature and moisture of the upper 5 mm of the soil surface. In addition to sensor construction, steps for quality control, as well as for calibration for various substrates, are explained. The sensors incorporate a Type E thermocouple to measure temperature and assess soil moisture by measuring the resistance between two gold-plated metal probes at the end of the sensor at a depth of 5 mm. The methods presented here can be altered to customize probes for different depths or substrates. These sensors have been effective in a variety of environments and have endured months of heavy rains in tropical forests as well as intense solar radiation in deserts of the southwestern U.S. Results demonstrate the effectiveness of these sensors for evaluating warming, drying, and freezing of the soil surface in a global change experiment.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Solo/química , Temperatura , Água/química , Calibragem , Colorado , Congelamento , Raios Infravermelhos
15.
PLoS One ; 13(10): e0203907, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30307962

RESUMO

Herbal extracts represent an ample source of natural compounds, with potential to be used in improving human health. There is a growing interest in using natural extracts as possible new treatment strategies for inflammatory diseases. We therefore aimed at identifying herbal extracts that affect inflammatory signaling pathways through toll-like receptors (TLRs), TLR2 and TLR4. Ninety-nine ethanolic extracts were screened in THP-1 monocytes and HeLa-TLR4 transfected reporter cells for their effects on stimulated TLR2 and TLR4 signaling pathways. The 28 identified anti-inflammatory extracts were tested in comparative assays of stimulated HEK-TLR2 and HEK-TLR4 transfected reporter cells to differentiate between direct TLR4 antagonistic effects and interference with downstream signaling cascades. Furthermore, the ten most effective anti-inflammatory extracts were tested on their ability to inhibit nuclear factor-κB (NF-κB) translocation in HeLa-TLR4 transfected reporter cell lines and for their ability to repolarize M1-type macrophages. Ethanolic extracts which showed the highest anti-inflammatory potential, up to a complete inhibition of pro-inflammatory cytokine production were Castanea sativa leaves, Cinchona pubescens bark, Cinnamomum verum bark, Salix alba bark, Rheum palmatum root, Alchemilla vulgaris plant, Humulus lupulus cones, Vaccinium myrtillus berries, Curcuma longa root and Arctostaphylos uva-ursi leaves. Moreover, all tested extracts mitigated not only TLR4, but also TLR2 signaling pathways. Seven of them additionally inhibited translocation of NF-κB into the nucleus. Two of the extracts showed impact on repolarization of pro-inflammatory M1-type to anti-inflammatory M2-type macrophages. Several promising anti-inflammatory herbal extracts were identified in this study, including extracts with previously unknown influence on key TLR signaling pathways and macrophage repolarization, serving as a basis for novel lead compound identification.


Assuntos
Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Anti-Inflamatórios/química , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Casca de Planta/química , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , Células THP-1 , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Transfecção
16.
Environ Microbiol Rep ; 10(3): 264-271, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29488349

RESUMO

Desert varnishes are dark rock coatings observed in arid environments and might resemble Mn-rich coatings found on Martian rocks. Their formation mechanism is not fully understood and the possible microbial involvement is under debate. In this study, we applied DNA metagenomic Shotgun sequencing of varnish and surrounding soil to evaluate the composition of the microbial community and its potential metabolic function. We found that the α diversity was lower in varnish compared to soil samples (p value < 0.05), suggesting distinct populations with significantly higher abundance of Actinobacteria, Proteobacteria and Cyanobacteria within the varnish. Additionally, we observed increased levels of transition metal metabolic processes in varnish compared to soil samples. Nevertheless, potentially relevant enzymes for varnish formation were detected at low to insignificant levels in both niches, indicating no current direct microbial involvement in Mn oxidation. This finding is supported by quantitative genomic analysis, elemental analysis, fluorescence imaging and scanning transmission X-ray microscopy. We thus conclude that the distinct microbial communities detected in desert varnish originate from settled Aeolian microbes, which colonized this nutrient-enriched niche, and discuss possible indirect contributions of microorganisms to the formation of desert varnish.


Assuntos
Actinobacteria/classificação , Argila/microbiologia , Cianobactérias/classificação , Compostos Férricos/metabolismo , Compostos de Manganês/metabolismo , Óxidos/metabolismo , Proteobactérias/classificação , Microbiologia do Solo , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Metagenômica/métodos , Microbiota/genética , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Análise de Sequência de DNA/métodos
17.
ISME J ; 12(4): 1032-1046, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29445133

RESUMO

Biological soil crusts (biocrusts) cover about 12% of the Earth's land masses, thereby providing ecosystem services and affecting biogeochemical fluxes on a global scale. They comprise photoautotrophic cyanobacteria, algae, lichens and mosses, which grow together with heterotrophic microorganisms, forming a model system to study facilitative interactions and assembly principles in natural communities. Biocrusts can be classified into cyanobacteria-, lichen-, and bryophyte-dominated types, which reflect stages of ecological succession. In this study, we examined whether these categories include a shift in heterotrophic communities and whether this may be linked to altered physiological properties. We analyzed the microbial community composition by means of qPCR and high-throughput amplicon sequencing and utilized flux measurements to investigate their physiological properties. Our results revealed that once 16S and 18S rRNA gene copy numbers increase, fungi become more predominant and alpha diversity increases with progressing succession. Bacterial communities differed significantly between biocrust types with a shift from more generalized to specialized organisms along succession. CO2 gas exchange measurements revealed large respiration rates of late successional crusts being significantly higher than those of initial biocrusts, and different successional stages showed distinct NO and HONO emission patterns. Thus, our study suggests that the photoautotrophic organisms facilitate specific microbial communities, which themselves strongly influence the overall physiological properties of biocrusts and hence local to global nutrient cycles.


Assuntos
Microbiologia do Solo , Processos Autotróficos , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Briófitas , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Ecossistema , Fungos/genética , Fungos/isolamento & purificação , Processos Heterotróficos , Líquens/isolamento & purificação , Solo/química
18.
Sci Total Environ ; 612: 767-774, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28866404

RESUMO

During the last decades, global cyanobacteria biomass increased due to climate change as well as industrial usage for production of biofuels and food supplements. Thus, there is a need for thorough characterization of their potential health risks, including allergenicity. We therefore aimed to identify and characterize similarities in allergenic potential of cyanobacteria originating from the major ecological environments. Different cyanobacterial taxa were tested for immunoreactivity with IgE from allergic donors and non-allergic controls using immunoblot and ELISA. Moreover, mediator release from human FcεR1-transfected rat basophilic leukemia (RBL) cells was measured, allowing in situ examination of the allergenic reaction. Phycocyanin content and IgE-binding potential were determined and inhibition assays performed to evaluate similarities in IgE-binding epitopes. Mass spectrometry analysis identified IgE-reactive bands ranging between 10 and 160kDa as phycobiliprotein compounds. Levels of cyanobacterial antigen-specific IgE in plasma of allergic donors and mediator release from sensitized RBL cells were significantly higher compared to non-allergic controls (p<0.01). Inhibition studies indicated cross-reactivity between IgE-binding proteins from fresh water cyanobacteria and phycocyanin standard. We further addressed IgE-binding characteristics of marine water and soil-originated cyanobacteria. Altogether, our data suggest that the intensive use and the strong increase in cyanobacterial abundance due to climate change call for increasing awareness and further monitoring of their potential health hazards.


Assuntos
Alérgenos/classificação , Cianobactérias/classificação , Cianobactérias/imunologia , Imunoglobulina E/imunologia , Animais , Linhagem Celular Tumoral , Mudança Climática , Água Doce , Humanos , Ratos , Água do Mar
19.
Environ Sci Technol ; 51(23): 13545-13567, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29111690

RESUMO

Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epidemiological exposure-response functions indicates that ambient air pollution causes more than four million premature deaths per year. Epidemiological studies usually refer to PM mass concentrations, but some health effects may relate to specific constituents such as bioaerosols, polycyclic aromatic compounds, and transition metals. Various analytical techniques and cellular and molecular assays are applied to assess the redox activity of PM and the formation of reactive oxygen species. Multiphase chemical interactions of lung antioxidants with atmospheric pollutants are crucial to the mechanistic and molecular understanding of oxidative stress upon respiratory deposition. The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.


Assuntos
Aerossóis , Poluentes Atmosféricos , Estudos Epidemiológicos , Poluição do Ar , Material Particulado
20.
Environ Sci Technol ; 51(8): 4119-4141, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28326768

RESUMO

Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.


Assuntos
Alérgenos/imunologia , Mudança Climática , Poluentes Atmosféricos , Poluição do Ar , Humanos , Hipersensibilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...