Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Int J Implant Dent ; 10(1): 21, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691252

RESUMO

BACKGROUND: Beta-tricalcium phosphate (ß-TCP) is a biocompatible ceramic material widely used in the field of oral regeneration. Due to its excellent biological and mechanical properties, it is increasingly utilized for alveolar ridge augmentation or guided bone regeneration (GBR). With recent advances in computer-aided design and manufacturing (CAD/CAM), ß-TCP can now be used in the form of digitally designed patient-specific scaffolds for customized bone regeneration (CBR) of advanced defects in a two-stage implant therapy concept. In this case report following the CARE case report guidelines, we present a novel application of a patient-specific ß-TCP scaffold in pre-implant mandibular alveolar ridge augmentation. CASE PRESENTATION: A 63-year-old female patient with significant horizontal bone loss in the posterior mandible was treated with a custom ß-TCP scaffold in the context of a two-stage backward-planned implant therapy. Cone-beam computed tomography nine months after augmentation showed successful integration of the scaffold into the surrounding bone, allowing implant placement. Follow-up until two years after initial surgery showed excellent oral and peri-implant health. CONCLUSIONS: This case highlights the potential of patient-specific ß-TCP scaffolds for alveolar ridge augmentation and their advantage over traditional techniques, including avoidance of xeno-, allo-, and autografts. The results provide encouraging evidence for their use in clinical practice. Patient-specific ß-TCP scaffolds may be a promising alternative for clinicians seeking to provide their patients with safe, predictable, and effective alveolar ridge augmentation results in customized bone regeneration procedures.


Assuntos
Aumento do Rebordo Alveolar , Fosfatos de Cálcio , Tomografia Computadorizada de Feixe Cônico , Alicerces Teciduais , Humanos , Aumento do Rebordo Alveolar/métodos , Fosfatos de Cálcio/uso terapêutico , Feminino , Pessoa de Meia-Idade , Mandíbula/cirurgia , Regeneração Óssea/efeitos dos fármacos , Implantação Dentária Endóssea/métodos , Desenho Assistido por Computador , Perda do Osso Alveolar/cirurgia
2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612634

RESUMO

The functionalization of bone substitutes with exosomes appears to be a promising technique to enhance bone tissue formation. This study investigates the potential of exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) to improve bone healing and bone augmentation when incorporated into wide open-porous 3D-printed ceramic Gyroid scaffolds. We demonstrated the multipotent characteristics of BMSCs and characterized the extracted exosomes using nanoparticle tracking analysis and proteomic profiling. Through cell culture experimentation, we demonstrated that BMSC-derived exosomes possess the ability to attract cells and significantly facilitate their differentiation into the osteogenic lineage. Furthermore, we observed that scaffold architecture influences exosome release kinetics, with Gyroid scaffolds exhibiting slower release rates compared to Lattice scaffolds. Nevertheless, in vivo implantation did not show increased bone ingrowth in scaffolds loaded with exosomes, suggesting that the scaffold microarchitecture and material were already optimized for osteoconduction and bone augmentation. These findings highlight the lack of understanding about the optimal delivery of exosomes for osteoconduction and bone augmentation by advanced ceramic scaffolds.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Medula Óssea , Proteômica , Engenharia Tecidual , Osso e Ossos , Cerâmica
3.
Sci Rep ; 14(1): 4916, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418564

RESUMO

The clinical standard therapy for large bone defects, typically addressed through autograft or allograft donor tissue, faces significant limitations. Tissue engineering offers a promising alternative strategy for the regeneration of substantial bone lesions. In this study, we harnessed poly(ethylene glycol) (PEG)-based hydrogels, optimizing critical parameters including stiffness, incorporation of arginine-glycine-aspartic acid (RGD) cell adhesion motifs, degradability, and the release of BMP2 to promote bone formation. In vitro we demonstrated that human bone marrow derived stromal cell (hBMSC) proliferation and spreading strongly correlates with hydrogel stiffness and adhesion to RGD peptide motifs. Moreover, the incorporation of the osteogenic growth factor BMP2 into the hydrogels enabled sustained release, effectively inducing bone regeneration in encapsulated progenitor cells. When used in vivo to treat calvarial defects in rats, we showed that hydrogels of low and intermediate stiffness optimally facilitated cell migration, proliferation, and differentiation promoting the efficient repair of bone defects. Our comprehensive in vitro and in vivo findings collectively suggest that the developed hydrogels hold significant promise for clinical translation for bone repair and regeneration by delivering sustained and controlled stimuli from active signaling molecules.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Ratos , Humanos , Animais , Materiais Biocompatíveis/química , Osteogênese , Diferenciação Celular , Hidrogéis/química , Polietilenoglicóis/química , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/metabolismo
4.
3D Print Addit Manuf ; 10(5): 905-916, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37886403

RESUMO

Autologous bone remains the gold standard bone substitute in clinical practice. Therefore, the microarchitecture of newly developed synthetic bone substitutes, which reflects the spatial distribution of materials in the scaffold, aims to recapitulate the natural bone microarchitecture. However, the natural bone microarchitecture is optimized to obtain a mechanically stable, lightweight structure adapted to the biomechanical loading situation. In the context of synthetic bone substitutes, the application of a Triply Periodic Minimum Surface (TPMS) algorithm can yield stable lightweight microarchitectures that, despite their demanding architectural complexity, can be produced by additive manufacturing. In this study, we applied the TPMS derivative Adaptive Density Minimal Surfaces (ADMS) algorithm to produce scaffolds from hydroxyapatite (HA) using a lithography-based layer-by-layer methodology and compared them with an established highly osteoconductive lattice microarchitecture. We characterized them for compression strength, osteoconductivity, and bone regeneration. The in vivo results, based on a rabbit calvaria defect model, showed that bony ingrowth into ADMS constructs as a measure of osteoconduction depended on minimal constriction as it limited the maximum apparent pore diameter in these scaffolds to 1.53 mm. Osteoconduction decreased significantly at a diameter of 1.76 mm. The most suitable ADMS microarchitecture was as osteoconductive as a highly osteoconductive orthogonal lattice microarchitecture in noncritical- and critical-size calvarial defects. However, the compression strength and microarchitectural integrity in vivo were significantly higher for scaffolds with their microarchitecture based on the ADMS algorithm when compared with high-connectivity lattice microarchitectures. Therefore, bone substitutes with high osteoconductivity can be designed with the advantages of the ADMS-based microarchitectures. As TPMS and ADMS microarchitectures are true lightweight structures optimized for high mechanical stability with a minimal amount of material, such microarchitectures appear most suitable for bone substitutes used in clinical settings to treat bone defects in weight-bearing and non-weight-bearing sites.

5.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373418

RESUMO

Tendon injuries can result in two major drawbacks. Adhesions to the surrounding tissue may limit the range of motion, while fibrovascular scar formation can lead to poor biomechanical outcomes. Prosthetic devices may help to mitigate those problems. Emulsion electrospinning was used to develop a novel three-layer tube based on the polymer DegraPol (DP), with incorporated insulin-like growth factor-1 (IGF-1) in the middle layer. Scanning electron microscopy was utilized to assess the fiber diameter in IGF-1 containing pure DP meshes. Further characterization was performed with Fourier Transformed Infrared Spectroscopy, Differential Scanning Calorimetry, and water contact angle, as well as through the assessment of mechanical properties and release kinetics from ELISA, and the bioactivity of IGF-1 by qPCR of collagen I, ki67, and tenomodulin in rabbit Achilles tenocytes. The IGF-1-containing tubes exhibited a sustained release of the growth factor up to 4 days and showed bioactivity by significantly upregulated ki67 and tenomodulin gene expression. Moreover, they proved to be mechanically superior to pure DP tubes (significantly higher fracture strain, failure stress, and elastic modulus). The novel three-layer tubes intended to be applied over conventionally sutured tendons after a rupture may help accelerate the healing process. The release of IGF-1 stimulates proliferation and matrix synthesis of cells at the repair site. In addition, adhesion formation to surrounding tissue can be reduced due to the physical barrier.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Animais , Coelhos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Emulsões/metabolismo , Antígeno Ki-67/metabolismo , Traumatismos dos Tendões/tratamento farmacológico , Traumatismos dos Tendões/metabolismo , Tendão do Calcâneo/metabolismo
6.
Tissue Eng Part A ; 29(19-20): 507-517, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37212290

RESUMO

Triply periodic minimal surfaces (TPMSs) are found to be promising microarchitectures for bone substitutes owing to their low weight and superior mechanical characteristics. However, existing studies on their application are incomplete because they focus solely on biomechanical or in vitro aspects. Hardly any in vivo studies where different TPMS microarchitectures are compared have been reported. Therefore, we produced hydroxyapatite-based scaffolds with three types of TPMS microarchitectures, namely Diamond, Gyroid, and Primitive, and compared them with an established Lattice microarchitecture by mechanical testing, 3D-cell culture, and in vivo implantation. Common to all four microarchitectures was the minimal constriction of a sphere of 0.8 mm in diameter, which earlier was found superior in Lattice microarchitectures. Scanning by µCT revealed the precision and reproducibility of our printing method. The mechanical analysis showed significantly higher compression strength for Gyroid and Diamond samples compared with Primitive and Lattice. After in vitro culture with human bone marrow stromal cells in control or osteogenic medium, no differences between these microarchitectures were observed. However, from the TPMS microarchitectures, Diamond- and Gyroid-based scaffolds showed the highest bone ingrowth and bone-to-implant contact in vivo. Therefore, Diamond and Gyroid designs appear to be the most promising TPMS-type microarchitectures for scaffolds produced for bone tissue engineering and regenerative medicine. Impact Statement Extensive bone defects require the application of bone grafts. To match the existing requirements, scaffolds based on triply periodic minimal surface (TPMS)-based microarchitectures could be used as bone substitutes. This work is dedicated to the investigation of mechanical and osteoconductive properties of TPMS-based scaffolds to determine the influencing factors on differences in their behavior and choose the most promising design to be used in bone tissue engineering.


Assuntos
Substitutos Ósseos , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais , Reprodutibilidade dos Testes , Porosidade , Diamante
7.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983073

RESUMO

The early phase of bone healing is a complex and poorly understood process. With additive manufacturing, we can generate a specific and customizable library of bone substitutes to explore this phase. In this study, we produced tricalcium phosphate-based scaffolds with microarchitectures composed of filaments of 0.50 mm in diameter, named Fil050G, and 1.25 mm named Fil125G, respectively. The implants were removed after only 10 days in vivo followed by RNA sequencing (RNAseq) and histological analysis. RNAseq results revealed upregulation of adaptive immune response, regulation of cell adhesion, and cell migration-related genes in both of our two constructs. However, significant overexpression of genes linked to angiogenesis, regulation of cell differentiation, ossification, and bone development was observed solely in Fil050G scaffolds. Moreover, quantitative immunohistochemistry of structures positive for laminin revealed a significantly higher number of blood vessels in Fil050G samples. Furthermore, µCT detected a higher amount of mineralized tissue in Fil050G samples suggesting a superior osteoconductive potential. Hence, different filament diameters and distances in bone substitutes significantly influence angiogenesis and regulation of cell differentiation involved in the early phase of bone regeneration, which precedes osteoconductivity and bony bridging seen in later phases and as consequence, impacts the overall clinical outcome.


Assuntos
Substitutos Ósseos , Alicerces Teciduais , Alicerces Teciduais/química , Substitutos Ósseos/química , Transcriptoma , Osso e Ossos , Osteogênese/genética , Regeneração Óssea/genética , Diferenciação Celular/genética , Fosfatos de Cálcio/farmacologia , Impressão Tridimensional
8.
Int J Bioprint ; 9(1): 626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844242

RESUMO

63Additive manufacturing can be applied to produce personalized bone substitutes. At present, the major three-dimensional (3D) printing methodology relies on filament extrusion. In bioprinting, the extruded filament consists mainly of hydrogels, in which growth factors and cells are embedded. In this study, we used a lithography-based 3D printing methodology to mimic filament-based microarchitectures by varying the filament dimension and the distance between the filaments. In the first set of scaffolds, all filaments were aligned toward bone ingrowth direction. In a second set of scaffolds, which were derived from the identical microarchitecture but tilted by 90°, only 50% of the filaments were in line with the bone ingrowth direction. Testing of all tricalcium phosphate-based constructs for osteoconduction and bone regeneration was performed in a rabbit calvarial defect model. The results revealed that if all filaments are in line with the direction of bone ingrowth, filament size and distance (0.40-1.25 mm) had no significant influence on defect bridging. However, with 50% of filaments aligned, osteoconductivity declined significantly with an increase in filament dimension and distance. Therefore, for filament-based 3D- or bio-printed bone substitutes, the distance between the filaments should be 0.40 to 0.50 mm irrespective of the direction of bone ingrowth or up to 0.83 mm if perfectly aligned to it.

9.
Bioengineering (Basel) ; 10(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36829714

RESUMO

Biomimetic nanocrystalline apatites analogous to bone mineral can be prepared using soft chemistry. Due to their high similarity to bone apatite, as opposed to stoichiometric hydroxyapatite for example, they now represent an appealing class of compounds to produce bioactive ceramics for which drug delivery and ion exchange abilities have been described extensively. However, immersion in aqueous media of dried non-carbonated biomimetic apatite crystals may generate an acidification event, which is often disregarded and not been clarified to-date. Yet, this acidification process could limit their further development if it is not understood and overcome if necessary. This may, for example, alter biological test outcomes, during their evaluation as bone repair materials, due to potentially deleterious effects of the acidic environment on cells, especially in in vitro static conditions. In this study, we explore the origins of this acidification phenomenon based on complementary experimental data and we point out the central role of the hydrated ionic layer present on apatite nanocrystals. We then propose a practical strategy to circumvent this acidification effect using an adequate post-precipitation equilibration step that was optimized. Using this enutralization protocol, we then showed the possibility of performing (micro)biological assessments on such compounds and provide an illustration with the examples of post-equilibrated Cu2+- and Ag+-doped nanocrystalline apatites. We demonstrate their non-cytotoxicity to osteoblast cells and their antibacterial features as tested versus five major pathogens involved in bone infections, therefore pointing to their relevance in the field of antibacterial bone substitutes. The preliminary in vivo implantation of a relevant sample in a rat's calvarial defect confirmed its biocompatibility and the absence of adverse reaction. Understanding and eliminating this technical barrier should help promoting biomimetic apatites as a genuine new class of biomaterial-producing compounds for bone regeneration applications, e.g., with antibacterial features, far from being solely considered as "laboratory curiosities".

10.
Biomaterials ; 294: 121989, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36628888

RESUMO

Healing large bone defects remains challenging in orthopedic surgery and is often associated with poor outcomes and complications. A major issue with bioengineered constructs is achieving a continuous interface between host bone and graft to enhance biological processes and mechanical stability. In this study, we have developed a new bioengineering strategy to produce oriented biocompatible 3D PLGA/aCaP nanocomposites with enhanced osseointegration. Decellularized scaffolds -containing only extracellular matrix- or scaffolds seeded with adipose-derived mesenchymal stromal cells were tested in a mouse model for critical size bone defects. In parallel to micro-CT analysis, SAXS tensor tomography and 2D scanning SAXS were employed to determine the 3D arrangement and nanostructure within the critical-sized bone. Both newly developed scaffold types, seeded with cells or decellularized, showed high osseointegration, higher bone quality, increased alignment of collagen fibers and optimal alignment and size of hydroxyapatite minerals.


Assuntos
Osseointegração , Alicerces Teciduais , Animais , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Alicerces Teciduais/química , Ácido Poliglicólico/química , Regeneração Óssea , Ácido Láctico/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Osteogênese
11.
J Compos Sci ; 7(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38645939

RESUMO

Revolutionary fabrication technologies such as three-dimensional (3D) printing to develop dental structures are expected to replace traditional methods due to their ability to establish constructs with the required mechanical properties and detailed structures. Three-dimensional printing, as an additive manufacturing approach, has the potential to rapidly fabricate complex dental prostheses by employing a bottom-up strategy in a layer-by-layer fashion. This new technology allows dentists to extend their degree of freedom in selecting, creating, and performing the required treatments. Three-dimensional printing has been narrowly employed in the fabrication of various kinds of prostheses and implants. There is still an on-demand production procedure that offers a reasonable method with superior efficiency to engineer multifaceted dental constructs. This review article aims to cover the most recent applications of 3D printing techniques in the manufacturing of dental prosthetics. More specifically, after describing various 3D printing techniques and their advantages/disadvantages, the applications of 3D printing in dental prostheses are elaborated in various examples in the literature. Different 3D printing techniques have the capability to use different materials, including thermoplastic polymers, ceramics, and metals with distinctive suitability for dental applications, which are discussed in this article. The relevant limitations and challenges that currently limit the efficacy of 3D printing in this field are also reviewed. This review article has employed five major scientific databases, including Google Scholar, PubMed, ScienceDirect, Web of Science, and Scopus, with appropriate keywords to find the most relevant literature in the subject of dental prostheses 3D printing.

12.
Materials (Basel) ; 15(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35207973

RESUMO

Additive manufacturing enables the realization of the macro- and microarchitecture of bone substitutes. The macroarchitecture is determined by the bone defect and its shape makes the implant patient specific. The preset distribution of the 3D-printed material in the macroarchitecture defines the microarchitecture. At the lower scale, the nanoarchitecture of 3D-printed scaffolds is dependent on the post-processing methodology such as the sintering temperature. However, the role of microarchitecture and nanoarchitecture of scaffolds for osteoconduction is still elusive. To address these aspects in more detail, we produced lithography-based osteoconductive scaffolds from hydroxyapatite (HA) of identical macro- and microarchitecture and varied their nanoarchitecture, such as microporosity, by increasing the maximum sintering temperatures from 1100 to 1400 °C. The different scaffold types were characterized for microporosity, compression strength, and nanoarchitecture. The in vivo results, based on a rabbit calvarial defect model showed that bony ingrowth, as a measure of osteoconduction, was independent from scaffold's microporosity. The same applies to in vitro osteoclastic resorbability, since on all tested scaffold types, osteoclasts formed on their surfaces and resorption pits upon exposure to mature osteoclasts were visible. Thus, for wide-open porous HA-based scaffolds, a low degree of microporosity and high mechanical strength yield optimal osteoconduction and creeping substitution. Based on our study, non-unions, the major complication during demanding bone regeneration procedures, could be prevented.

13.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681710

RESUMO

The human skeleton is a dynamic and remarkably organized organ system that provides mechanical support and performs a variety of additional functions. Bone tissue undergoes constant remodeling; an essential process to adapt architecture/resistance to growth and mechanical needs, but also to repair fractures and micro-damages. Despite bone's ability to heal spontaneously, certain situations require an additional stimulation of bone regeneration, such as non-union fractures or after tumor resection. Among the growth factors used to increase bone regeneration, bone morphogenetic protein-2 (BMP2) is certainly the best described and studied. If clinically used in high quantities, BMP2 is associated with various adverse events, including fibrosis, overshooting bone formation, induction of inflammation and swelling. In previous studies, we have shown that it was possible to reduce BMP2 doses significantly, by increasing the response and sensitivity to it with small molecules called "BMP2 enhancers". In the present study, we investigated the effect of N-Vinyl-2-pyrrolidone (NVP) on osteoblast and osteoclast differentiation in vitro and guided bone regeneration in vivo. We showed that NVP increases BMP2-induced osteoblast differentiation and decreases RANKL-induced osteoclast differentiation in a dose-dependent manner. Moreover, in a rabbit calvarial defect model, the histomorphometric analysis revealed that bony bridging and bony regenerated area achieved with NVP-loaded poly (lactic-co-glycolic acid (PLGA) membranes were significantly higher compared to unloaded membranes. Taken together, our results suggest that NVP sensitizes BMP2-dependent pathways, enhances BMP2 effect, and inhibits osteoclast differentiation. Thus, NVP could prove useful as "osteopromotive substance" in situations where a high rate of bone regeneration is required, and in the management of bone diseases associated with excessive bone resorption, like osteoporosis.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Pirrolidinonas/farmacologia , Animais , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/patologia , Proteína Morfogenética Óssea 2/agonistas , Proteína Morfogenética Óssea 2/metabolismo , Osso e Ossos/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Modelos Animais de Doenças , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Pirrolidinonas/química , Pirrolidinonas/uso terapêutico , Ligante RANK/farmacologia , Coelhos , Proteína Smad1/metabolismo
14.
Toxicol Appl Pharmacol ; 423: 115568, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965371

RESUMO

N-methyl pyrrolidone (NMP) is an FDA approved molecule used as an excipient in pharmaceutical industry. Besides having a central role in formulation of drugs, the most important function of any excipient is to guarantee the safety of the medicine during and after its administration. Several studies have shown that exposure to NMP and especially in rats produce a gonadotoxic effect leading to infertility. However, the mechanisms underlying the effect of NMP on male reproduction are unknown. The aim of this study was to assess the reproductive toxicity of NMP in male rats and to elucidate the underlying mechanism. Male Sprague Dawley rats were injected intraperitoneally, twice/ week, at a dose of 108 mg/ 100 g of body weight with NMP. Analysis of reproductive parameters revealed testicular atrophy in NMP treated animals compared to control animals. Germ cell composition within the seminiferous tubules was disturbed and manifested in an increase in number of cells with fragmented DNA. A subsequent decrease in number of spermatocytes and spermatids was observed. Alpha screen assay shows that NMP acts at the concentrations we applied in vivo as a low affinity inhibitor for BRDT (testis specific bromodomain protein). BRDT inhibition is mirrored by a significant decrease in the expression of early stage spermatocyte markers (lmna, aurkc and ccna1), during which BRDT expression predominates. A significant decrease in testosterone levels was also observed. Since NMP interferes with spermatogenesis on various levels, its use in humans must be carefully monitored.


Assuntos
Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/metabolismo , Pirrolidinonas/toxicidade , Espermatogênese/efeitos dos fármacos , Teratogênicos/toxicidade , Animais , Relação Dose-Resposta a Droga , Hormônio Foliculoestimulante/sangue , Masculino , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Espermatogênese/fisiologia , Testosterona/sangue
15.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291724

RESUMO

Additive manufacturing is a key technology required to realize the production of a personalized bone substitute that exactly meets a patient's need and fills a patient-specific bone defect. Additive manufacturing can optimize the inner architecture of the scaffold for osteoconduction, allowing fast and reliable defect bridging by promoting rapid growth of new bone tissue into the scaffold. The role of scaffold microporosity/nanoarchitecture in osteoconduction remains elusive. To elucidate this relationship, we produced lithography-based osteoconductive scaffolds from tricalcium phosphate (TCP) with identical macro- and microarchitecture, but varied their nanoarchitecture/microporosity by ranging maximum sintering temperatures from 1000 °C to 1200 °C. After characterization of the different scaffolds' microporosity, compression strength, and nanoarchitecture, we performed in vivo studies that showed that ingrowth of bone as an indicator of osteoconduction significantly decreased with decreasing microporosity. Moreover, at the 1200 °C peak sinter temperature and lowest microporosity, osteoclastic degradation of the material was inhibited. Thus, even for wide-open porous TCP-based scaffolds, a high degree of microporosity appears to be essential for optimal osteoconduction and creeping substitution, which can prevent non-unions, the major complication during bone regeneration procedures.


Assuntos
Reabsorção Óssea , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Osteoclastos/metabolismo , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química , Força Compressiva , Teste de Materiais , Osteoclastos/citologia , Porosidade , Próteses e Implantes , Engenharia Tecidual/métodos
16.
Front Physiol ; 11: 601084, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240111

RESUMO

Development of an effective male contraceptive agent remains a challenge. The present study evaluates the potential of N, N-Dimethylacetamide (DMA), a FDA approved excipient as a male contraceptive agent. Male Sprague Dawley rats injected with DMA for a period of 8 weeks (one injection per week) showed a significant alteration of reproductive parameters. Furthermore, DMA treated animals showed complete infertility in a dose dependent manner, as no pups were born despite proper mating between females and DMA treated males. However, stopping the DMA treatment for a period of 8 weeks (after the initial treatment) restored the reproductive parameters to normal. Moreover, the fertility was resumed to normal as pups were born in the groups where DMA treatment was halted after initial DMA treatment. All these changes had no effect on the level of reproductive hormones FSH, LH and testosterone. Taken together, our results indicate that DMA acts in a reversible and non-hormonal manner to achieve contraception in rats. Therefore, repurposing the use of DMA could lead in a short time to an inexpensive and safer male contraceptive option.

17.
Front Endocrinol (Lausanne) ; 11: 556962, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123087

RESUMO

From the beginning of 2020, the governments and the health systems around the world are tackling infections and fatalities caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) resulting in the coronavirus disease 2019 (COVID-19). This virus pandemic has turned more complicated as individuals with co-morbidities like diabetes, cardiovascular conditions and obesity are at a high risk of acquiring infection and suffering from a more severe course of disease. Prolonged viral infection and obesity are independently known to lower the immune response and a combination can thus result in a "cytokine storm" and a substantial weakening of the immune system. With the rise in obesity cases globally, the chances that obese individuals will acquire infection and need hospitalization are heightened. In this review, we discuss why obesity, a low-grade chronic inflammation, contributes toward the increased severity in COVID-19 patients. We suggest that increased inflammation, activation of renin-angiotensin-aldosterone system, elevated adipokines and higher ectopic fat may be the factors contributing to the disease severity, in particular deteriorating the cardiovascular and lung function, in obese individuals. We look at the many lessons learnt from the 2009 H1N1 influenza A pandemic and relate it to the very little but fast incoming information that is available from the SARS-CoV-2 infected individuals with overweight and obesity.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/epidemiologia , Inflamação/fisiopatologia , Vírus da Influenza A/isolamento & purificação , Influenza Humana/epidemiologia , Obesidade/fisiopatologia , Pneumonia Viral/epidemiologia , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Humanos , Influenza Humana/imunologia , Influenza Humana/virologia , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2
18.
Chemosphere ; 256: 127001, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32447106

RESUMO

N, N-Dimethylacetamide is an FDA approved solvent widely used in pharmaceutical industry to facilitate the solubility of lipophilic, high molecular weight drugs with poor water solubility. However, the cytotoxic effects of DMA raises the concern about its use in clinical applications. In the present study, we address the effect of DMA on spermatogenesis. Male Sprague Dawley rats were injected intra-peritoneally for 8 weeks, once a week at a dose of 862 mg/kg. Analysis of reproductive parameters revealed that DMA treated animals exhibit spermatid formation defects within the testis describing the characteristics of oligozoospermia. A subsequent decrease in epididymal sperm concentration along with distortion of sperm morphology was observed. The mitochondrial and microtubule organization in the sperm is considerably modified by DMA. This disrupts the sperm kinetics thus decreasing the total and progressive sperm motility. Finally, DMA treatment resulted in loss of fertility. Our results indicate that exposure to DMA has a negative impact on spermatogenesis and leads to infertility in male rats by inhibiting the post meiotic stages of sperm development. Therefore, the use of DMA in humans must be closely monitored.


Assuntos
Acetamidas/toxicidade , Excipientes/toxicidade , Espermatogênese/efeitos dos fármacos , Animais , Epididimo/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Humanos , Infertilidade , Masculino , Ratos , Ratos Sprague-Dawley , Reprodução , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos
19.
Adv Sci (Weinh) ; 7(7): 1903395, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32274319

RESUMO

The treatment of bone defects with recombinant bone morphogenetic protein-2 (BMP-2) requires high doses precluding broad clinical application. Here, a bioengineering approach is presented that strongly improves low-dose BMP-2-based bone regeneration by mobilizing healing-associated mesenchymal progenitor cells (MPCs). Smart synthetic hydrogels are used to trap and study endogenous MPCs trafficking to bone defects. Hydrogel-trapped and prospectively isolated MPCs differentiate into multiple lineages in vitro and form bone in vivo. In vitro screenings reveal that platelet-derived growth factor BB (PDGF-BB) strongly recruits prospective MPCs making it a promising candidate for the engineering of hydrogels that enrich endogenous MPCs in vivo. However, PDGF-BB inhibits BMP-2-mediated osteogenesis both in vitro and in vivo. In contrast, smart two-way dynamic release hydrogels with fast-release of PDGF-BB and sustained delivery of BMP-2 beneficially promote the healing of bone defects. Collectively, it is shown that modulating the dynamics of endogenous progenitor cells in vivo by smart synthetic hydrogels significantly improves bone healing and holds great potential for other advanced applications in regenerative medicine.

20.
J Endod ; 46(5): 641-647, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32139264

RESUMO

INTRODUCTION: Transforming growth factor beta 1 (TGF-ß1) is a key morphogen in regenerative endodontics; yet, its location within the hard tissue phase of dentin and its availability in mature roots have not been fully elucidated. METHODS: Young mature (n = 8) and immature (n = 11) roots from sound premolars were obtained from 13 orthodontic patients aged 17 ± 1 and 12 ± 1 years, respectively. Roots were cleaned of organic remnants in 5% sodium hypochlorite. The width of the minor foramen was measured using a digital microscope. TGF-ß1 distribution was assessed in 3 roots per group by immunostaining combined with confocal laser scanning microscopy. The root dentin of the remaining 13 roots was powdered and decalcified in 17% EDTA to determine the overall levels of hard tissue-embedded TGF-ß1 by enzyme-linked immunosorbent assay. Data were compared between groups using the Student t test (α = .05). RESULTS: The minor foramen was 168 ± 49 µm versus 557 ± 295 µm in mature compared with immature roots (P < .05). TGF-ß1 was highly stainable toward the pulp space in both groups. It was clearly associated with peritubular dentin and apparently absent in nontubular outer dentin. TGF-ß1 content was 115 ± 31 pg and 74 ± 35 pg/100 mg mature versus immature root dentin, respectively (P > .05). CONCLUSIONS: TGF-ß1 is deposited into the peritubular dentin. It should be possible to release this molecule in regenerative endodontic procedures from young mature roots as well as immature roots.


Assuntos
Irrigantes do Canal Radicular , Fator de Crescimento Transformador beta1 , Dente Pré-Molar , Dentina , Ácido Edético , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...