Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Nat Microbiol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548922

RESUMO

Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV.

2.
Mol Ther ; 32(2): 540-555, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38213030

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific neutralizing antibodies (NAbs) lack cross-reactivity between SARS-CoV species and variants and fail to mediate long-term protection against infection. The maintained protection against severe disease and death by vaccination suggests a role for cross-reactive T cells. We generated vaccines containing sequences from the spike or receptor binding domain, the membrane and/or nucleoprotein that induced only T cells, or T cells and NAbs, to understand their individual roles. In three models with homologous or heterologous challenge, high levels of vaccine-induced SARS-CoV-2 NAbs protected against neither infection nor mild histological disease but conferred rapid viral control limiting the histological damage. With no or low levels of NAbs, vaccine-primed T cells, in mice mainly CD8+ T cells, partially controlled viral replication and promoted NAb recall responses. T cells failed to protect against histological damage, presumably because of viral spread and subsequent T cell-mediated killing. Neither vaccine- nor infection-induced NAbs seem to provide long-lasting protective immunity against SARS-CoV-2. Thus, a more realistic approach for universal SARS-CoV-2 vaccines should be to aim for broadly cross-reactive NAbs in combination with long-lasting highly cross-reactive T cells. Long-lived cross-reactive T cells are likely key to prevent severe disease and fatalities during current and future pandemics.


Assuntos
Anticorpos Neutralizantes , Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , Vacinas Virais
3.
Viruses ; 15(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005928

RESUMO

Rift Valley fever phlebovirus (RVFV) is a zoonotic pathogen that causes Rift Valley fever (RVF) in livestock and humans. Currently, there is no licensed human vaccine or antiviral drug to control RVF. Although multiple species of animals and humans are vulnerable to RVFV infection, host factors affecting susceptibility are not well understood. To identify the host factors or genes essential for RVFV replication, we conducted CRISPR-Cas9 knockout screening in human A549 cells. We then validated the putative genes using siRNA-mediated knock-downs and CRISPR-Cas9-mediated knock-out studies. The role of a candidate gene in the virus replication cycle was assessed by measuring intracellular viral RNA accumulation, and the virus titers were analyzed using plaque assay or TCID50 assay. We identified approximately 900 genes with potential involvement in RVFV infection and replication. Further evaluation of the effect of six genes on viral replication using siRNA-mediated knock-downs revealed that silencing two genes (WDR7 and LRP1) significantly impaired RVFV replication. For further analysis, we focused on the WDR7 gene since the role of the LRP1 gene in RVFV replication was previously described in detail. WDR7 knockout A549 cell lines were generated and used to dissect the effect of WRD7 on a bunyavirus, RVFV, and an orthobunyavirus, La Crosse encephalitis virus (LACV). We observed significant effects of WDR7 knockout cells on both intracellular RVFV RNA levels and viral titers. At the intracellular RNA level, WRD7 affected RVFV replication at a later phase of its replication cycle (24 h) when compared with the LACV replication, which was affected in an earlier replication phase (12 h). In summary, we identified WDR7 as an essential host factor for the replication of two different viruses, RVFV and LACV, both of which belong to the Bunyavirales order. Future studies will investigate the mechanistic role through which WDR7 facilitates phlebovirus replication.


Assuntos
Phlebovirus , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Vírus da Febre do Vale do Rift/genética , Phlebovirus/genética , Replicação Viral , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas Adaptadoras de Transdução de Sinal
4.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808812

RESUMO

Background: Rift Valley fever phlebovirus (RVFV) is a zoonotic pathogen that causes Rift Valley fever (RVF) in livestock and humans. Currently, there is no licensed human vaccine or antiviral drug to control RVF. Although multiple species of animals and humans are vulnerable to RVFV infection, host factors affecting susceptibility are not well understood. Methodology: To identify the host factors or genes essential for RVFV replication, we conducted a CRISPR-Cas9 knock-out screen in human A549 cells. We then validated the putative genes using siRNA-mediated knockdowns and CRISPR-Cas9-mediated knockout studies, respectively. The role of a candidate gene in the virus replication cycle was assessed by measuring intracellular viral RNA accumulation, and the virus titers by plaque assay or TCID50 assay. Findings: We identified approximately 900 genes with potential involvement in RVFV infection and replication. Further evaluation of the effect of six genes on viral replication using siRNA-mediated knockdowns found that silencing two genes (WDR7 and LRP1) significantly impaired RVFV replication. For further analysis, we focused on the WDR7 gene since the role of LRP1 in RVFV replication was previously described in detail. Knock-out A549 cell lines were generated and used to dissect the effect of WRD7 on RVFV and another bunyavirus, La Crosse encephalitis virus (LACV). We observed significant effects of WDR7 knock-out cells on both intracellular RVFV RNA levels and viral titers. At the intracellular RNA level, WRD7 affected RVFV replication at a later phase of its replication cycle (24h) when compared to LACV which was affected an earlier replication phase (12h). Conclusion: In summary, we have identified WDR7 as an essential host factor for the replication of two relevant bunyaviruses, RVFV and LACV. Future studies will investigate the mechanistic role by which WDR7 facilitates Phlebovirus replication.

5.
Nat Commun ; 14(1): 6785, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880247

RESUMO

Marburg and Ebola filoviruses are two of the deadliest infectious agents and several outbreaks have occurred in the last decades. Although several receptors and co-receptors have been reported for Ebola virus, key host factors remain to be elucidated. In this study, using a haploid cell screening platform, we identify the guanine nucleotide exchange factor CCZ1 as a key host factor in the early stage of filovirus replication. The critical role of CCZ1 for filovirus infections is validated in 3D primary human hepatocyte cultures and human blood-vessel organoids, both critical target sites for Ebola and Marburg virus tropism. Mechanistically, CCZ1 controls early to late endosomal trafficking of these viruses. In addition, we report that CCZ1 has a role in the endosomal trafficking of endocytosis-dependent SARS-CoV-2 infections, but not in infections by Lassa virus, which enters endo-lysosomal trafficking at the late endosome stage. Thus, we have identified an essential host pathway for filovirus infections in cell lines and engineered human target tissues. Inhibition of CCZ1 nearly completely abolishes Marburg and Ebola infections. Thus, targeting CCZ1 could potentially serve as a promising drug target for controlling infections caused by various viruses, such as SARS-CoV-2, Marburg, and Ebola.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Doença do Vírus de Marburg , Marburgvirus , Proteínas de Transporte Vesicular , Animais , Humanos , Ebolavirus/metabolismo , Lisossomos , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/metabolismo , Marburgvirus/metabolismo , Proteínas de Transporte Vesicular/metabolismo
6.
J Biol Chem ; 299(11): 105287, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742919

RESUMO

The integrated stress response (ISR) protects cells from a variety of insults. Once elicited (e.g., by virus infections), it eventually leads to the block of mRNA translation. Central to the ISR are the interactions between translation initiation factors eIF2 and eIF2B. Under normal conditions, eIF2 drives the initiation of protein synthesis through hydrolysis of GTP, which becomes replenished by the guanine nucleotide exchange factor eIF2B. The antiviral branch of the ISR is activated by the RNA-activated kinase PKR which phosphorylates eIF2, thereby converting it into an eIF2B inhibitor. Here, we describe the recently solved structures of eIF2B in complex with eIF2 and a novel escape strategy used by viruses. While unphosphorylated eIF2 interacts with eIF2B in its "productive" conformation, phosphorylated eIF2 [eIF2(αP)] engages a different binding cavity on eIF2B and forces it into the "nonproductive" conformation that prohibits guanine nucleotide exchange factor activity. It is well established that viruses express so-called PKR antagonists that interfere with double-strand RNA, PKR itself, or eIF2. However recently, three taxonomically unrelated viruses were reported to encode antagonists targeting eIF2B instead. For one antagonist, the S segment nonstructural protein of Sandfly fever Sicilian virus, atomic structures showed that it occupies the eIF2(αP)-binding cavity on eIF2B without imposing a switch to the nonproductive conformation. S segment nonstructural protein thus antagonizes the activity of PKR by protecting eIF2B from inhibition by eIF2(αP). As the ISR and specifically eIF2B are central to neuroprotection and a wide range of genetic and age-related diseases, these developments may open new possibilities for treatments.


Assuntos
Fator de Iniciação 2B em Eucariotos , Fator de Iniciação 2 em Eucariotos , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosforilação , Biossíntese de Proteínas , RNA/metabolismo , Humanos , Animais
7.
J Virol ; 97(10): e0020523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37728614

RESUMO

IMPORTANCE: A common hypothesis holds that bats (order Chiroptera) are outstanding reservoirs for zoonotic viruses because of a special antiviral interferon (IFN) system. However, functional studies about key components of the bat IFN system are rare. RIG-I is a cellular sensor for viral RNA signatures that activates the antiviral signaling chain to induce IFN. We cloned and functionally characterized RIG-I genes from two species of the suborders Yangochiroptera and Yinpterochiroptera. The bat RIG-Is were conserved in their sequence and domain organization, and similar to human RIG-I in (i) mediating virus- and IFN-activated gene expression, (ii) antiviral signaling, (iii) temperature dependence, and (iv) recognition of RNA ligands. Moreover, RIG-I of Rousettus aegyptiacus (suborder Yinpterochiroptera) and of humans were found to recognize SARS-CoV-2 infection. Thus, members of both bat suborders encode RIG-Is that are comparable to their human counterpart. The ability of bats to harbor zoonotic viruses therefore seems due to other features.


Assuntos
Quirópteros , Receptores do Ácido Retinoico , SARS-CoV-2 , Animais , Humanos , Quirópteros/metabolismo , COVID-19 , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , SARS-CoV-2/fisiologia , Vírus , Receptores do Ácido Retinoico/química , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo
8.
Life Sci Alliance ; 6(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37072184

RESUMO

Viruses with an RNA genome are often the cause of zoonotic infections. In order to identify novel pro-viral host cell factors, we screened a haploid insertion-mutagenized mouse embryonic cell library for clones that are resistant to Rift Valley fever virus (RVFV). This screen returned the low-density lipoprotein receptor-related protein 1 (LRP1) as a top hit, a plasma membrane protein involved in a wide variety of cell activities. Inactivation of LRP1 in human cells reduced RVFV RNA levels already at the attachment and entry stages of infection. Moreover, the role of LRP1 in promoting RVFV infection was dependent on physiological levels of cholesterol and on endocytosis. In the human cell line HuH-7, LRP1 also promoted early infection stages of sandfly fever Sicilian virus and La Crosse virus, but had a minor effect on late infection by vesicular stomatitis virus, whereas encephalomyocarditis virus was entirely LRP1-independent. Moreover, siRNA experiments in human Calu-3 cells demonstrated that also SARS-CoV-2 infection benefitted from LRP1. Thus, we identified LRP1 as a host factor that supports infection by a spectrum of RNA viruses.


Assuntos
COVID-19 , Vírus da Febre do Vale do Rift , Animais , Humanos , Camundongos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , SARS-CoV-2/genética , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Lipoproteínas LDL/metabolismo
9.
Arch Virol ; 168(2): 63, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36637551

RESUMO

Influenza A virus (FLUAV) is a significant human pathogen. In silico structural analysis (PMID 28628827) has suggested that the FDA-approved drug paliperidone interferes with the binding of the FLUAV polymerase subunit PB2 to the nucleoprotein NP. We found that paliperidone inhibits FLUAV A/PR/8/34 early after infection of canine MDCK II, human A549, and human primary bronchial cells, but not at late time points. No effect was detectable against the strains A/Hamburg/05/2009 and A/WSN/33. Moreover, paliperidone indeed disturbed the interaction between the PB2 and the NP of A/PR/8/34 and reduced early viral RNA and protein synthesis by approximately 50%. Thus, paliperidone has measurable but transient and virus-strain-restricted effects on FLUAV.


Assuntos
Antivirais , Vírus da Influenza A , Palmitato de Paliperidona , Animais , Cães , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Nucleoproteínas , Palmitato de Paliperidona/farmacologia , RNA Viral , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral , Células Madin Darby de Rim Canino , Células A549 , Antivirais/farmacologia
10.
Curr Opin Immunol ; 78: 102251, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36242870

RESUMO

The interferon-regulated kinase PKR (protein kinase RNA-activated) is a potent innate immune factor against a broad range of viruses. Being part of the integrated stress response (ISR), its restrictive effect is predominantly exerted by phosphorylating the eukaryotic translation-initiation factor eIF2, thereby turning it into an inhibitor of translation-initiation factor eIF2B. A plethora of viruses are known to evade the shutdown of cellular mRNA translation by interfering either with PKR activation or with eIF2 phosphorylation. Recently, a novel PKR evasion strategy was described: proteins from three taxonomically distinct RNA viruses allow for full PKR activation and eIF2 phosphorylation in the infected cell, but protect eIF2B from inhibition by phosphorylated eIF2, thus enabling mRNA translation in the presence of an activated ISR.


Assuntos
Fator de Iniciação 2B em Eucariotos , Fator de Iniciação 2 em Eucariotos , Imunidade Inata , Viroses , Humanos , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Imunidade Inata/genética , Imunidade Inata/fisiologia , Interferons , Proteínas Quinases/imunologia , Proteínas Quinases/metabolismo , RNA Mensageiro , Viroses/genética , Viroses/imunologia , Viroses/metabolismo
11.
EMBO Mol Med ; 14(10): e15821, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35986481

RESUMO

New variants in the SARS-CoV-2 pandemic are more contagious (Alpha/Delta), evade neutralizing antibodies (Beta), or both (Omicron). This poses a challenge in vaccine development according to WHO. We designed a more universal SARS-CoV-2 DNA vaccine containing receptor-binding domain loops from the huCoV-19/WH01, the Alpha, and the Beta variants, combined with the membrane and nucleoproteins. The vaccine induced spike antibodies crossreactive between huCoV-19/WH01, Beta, and Delta spike proteins that neutralized huCoV-19/WH01, Beta, Delta, and Omicron virus in vitro. The vaccine primed nucleoprotein-specific T cells, unlike spike-specific T cells, recognized Bat-CoV sequences. The vaccine protected mice carrying the human ACE2 receptor against lethal infection with the SARS-CoV-2 Beta variant. Interestingly, priming of cross-reactive nucleoprotein-specific T cells alone was 60% protective, verifying observations from humans that T cells protect against lethal disease. This SARS-CoV vaccine induces a uniquely broad and functional immunity that adds to currently used vaccines.


Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , Nucleoproteínas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Linfócitos T , Vacinas de DNA/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vacinas Virais/genética
12.
Viruses ; 14(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35891445

RESUMO

La Crosse virus (LACV) is a major cause of pediatric encephalitis and aseptic meningitis in the Midwestern, Mid-Atlantic, and Southern United States, where it is an emerging pathogen. The LACV Gc glycoprotein plays a critical role in the neuropathogenesis of LACV encephalitis as the putative virus attachment protein. Previously, we identified and experimentally confirmed the location of the LACV fusion peptide within Gc and generated a panel of recombinant LACVs (rLACVs) containing mutations in the fusion peptide as well as the wild-type sequence. These rLACVs retained their ability to cause neuronal death in a primary embryonic rat neuronal culture system, despite decreased replication and fusion phenotypes. To test the role of the fusion peptide in vivo, we tested rLACVs in an age-dependent murine model of LACV encephalitis. When inoculated directly into the CNS of young adult mice (P28), the rLACV fusion peptide mutants were as neurovirulent as the rLACV engineered with a wild-type sequence, confirming the results obtained in tissue culture. In contrast, the fusion peptide mutant rLACVs were less neuroinvasive when suckling (P3) or weanling (P21) mice were inoculated peripherally, demonstrating that the LACV fusion peptide is a determinant of neuroinvasion, but not of neurovirulence. In a challenge experiment, we found that peripheral challenge of weanling (P21) mice with fusion peptide mutant rLACVs protected from a subsequent WT-LACV challenge, suggesting that mutations in the fusion peptide are an attractive target for generating live-attenuated virus vaccines. Importantly, the high degree of conservation of the fusion peptide amongst the Bunyavirales and, structurally, other arboviruses suggests that these findings are broadly applicable to viruses that use a class II fusion mechanism and cause neurologic disease.


Assuntos
Encefalite da Califórnia , Vírus La Crosse , Animais , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Ratos , Estados Unidos , Proteínas Virais/genética
13.
J Virol ; 96(13): e0059922, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35695578

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne orthonairovirus that causes a severe, often fatal, hemorrhagic disease throughout Africa, Asia, and Southeast Europe. A wide variety of strains are circulating in the field which broadly correlate to their geographic distribution. The viral determinants of pathogenicity remain unclear, as does the contribution of strain-specific differences to pathology. Aigai virus (AIGV) is a closely related virus (formally designated CCHFV genotype VI, Europe II, or AP92-like virus), which has been proposed to be less virulent than CCHFV. However, the molecular details leading to potential differences in virulence are unknown. To explore if differences exist, life cycle modeling systems, including both a minigenome and a transcriptionally competent virus-like particle assay, were developed for AIGV to allow the comparison with the CCHFV reference IbAr10200 strain. Using this approach, we could demonstrate that AIGV exhibits lower viral gene expression than the reference strain of CCHFV. Subsequent systematic exchange of viral components revealed that the L protein is responsible for the observed differences in gene expression and that the interferon (IFN) antagonistic activity of the ovarian tumor-type protease domain is not responsible for this effect. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is the cause of severe hemorrhagic disease, which is often fatal. Present throughout Africa, Asia, and Southeast Europe, a diverse number of viral genotypes exist. However, the viral determinants of pathogenicity remain unclear. It has been proposed that the closely related Aigai virus (AIGV) may be a less virulent virus. Here, using newly developed and improved life cycle modeling systems we have examined potential differences between the CCHFV reference strain, IbAr10200, and AIGV. Using this approach, we identified lower viral gene expression driven by the AIGV viral polymerase as a major difference which may be indicative of lower virulence.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Virulência , África , Animais , Modelos Animais de Doenças , Europa (Continente) , Regulação Viral da Expressão Gênica , Genótipo , Vírus da Febre Hemorrágica da Crimeia-Congo/classificação , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Febre Hemorrágica da Crimeia/virologia , Humanos , Especificidade da Espécie , Virulência/genética
14.
Mol Ther Nucleic Acids ; 28: 623-635, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35497503

RESUMO

Natural circular RNAs have been found to sequester microRNAs and suppress their function. We have used this principle as a molecular tool and produced artificial circular RNA sponges in a cell-free system by in vitro transcription and ligation. Formerly, we were able to inhibit hepatitis C virus propagation by applying a circular RNA decoy strategy against microRNA-122, which is essential for the viral life cycle. In another proof-of-principle study, we used circular RNAs to sequester microRNA-21, an oncogenic and pro-proliferative microRNA. This strategy slowed tumor growth in a 3D cell culture model system, as well as in xenograft mice upon systemic delivery. In the wake of the global use of an in vitro transcribed RNA in coronavirus disease 2019 (COVID-19) vaccines, the question arose whether therapeutic circular RNAs trigger cellular antiviral defense mechanisms when delivered systemically. In this study, we present data on the cellular innate immune response as a consequence of liposome-based transfection of the circular RNA sponges we previously used to inhibit microRNA function. We find that circular RNAs produced by the presented methodology do not trigger the antiviral response and do not activate innate immune-signaling pathways.

15.
Front Cell Infect Microbiol ; 12: 875539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573791

RESUMO

Rift Valley fever (RVF) is an arboviral zoonotic disease affecting many African countries with the potential to spread to other geographical areas. RVF affects sheep, goats, cattle and camels, causing a high rate of abortions and death of newborn lambs. Also, humans can be infected, developing a usually self-limiting disease that can turn into a more severe illness in a low percentage of cases. Although different veterinary vaccines are available in endemic areas in Africa, to date no human vaccine has been licensed. In previous works, we described the selection and characterization of a favipiravir-mutagenized RVFV variant, termed 40Fp8, with potential as a RVF vaccine candidate due to the strong attenuation shown in immunocompromised animal models. Compared to the parental South African 56/74 viral strain, 40Fp8 displayed 7 amino acid substitutions in the L-protein, three of them located in the central region corresponding to the catalytic core of the RNA-dependent RNA polymerase (RdRp). In this work, by means of a reverse genetics system, we have analyzed the effect on virulence of these amino acid changes, alone or combined, both in vitro and in vivo. We found that the simultaneous introduction of two changes (G924S and A1303T) in the heterologous ZH548-RVFV Egyptian strain conferred attenuated phenotypes to the rescued viruses as shown in infected mice without affecting virus immunogenicity. Our results suggest that both changes induce resistance to favipiravir likely associated to some fitness cost that could be the basis for the observed attenuation in vivo. Conversely, the third change, I1050V, appears to be a compensatory mutation increasing viral fitness. Altogether, these results provide relevant information for the safety improvement of novel live attenuated RVFV vaccines.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Virais , Aminoácidos , Animais , Bovinos , Vírus de DNA , Feminino , Camundongos , Gravidez , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift/genética , Ovinos , Vacinas Atenuadas/genética , Vacinas Virais/genética
16.
Viruses ; 14(5)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35632715

RESUMO

The International Virus Bioinformatics Meeting 2022 took place online, on 23-25 March 2022, and has attracted about 380 participants from all over the world. The goal of the meeting was to provide a meaningful and interactive scientific environment to promote discussion and collaboration and to inspire and suggest new research directions and questions. The participants created a highly interactive scientific environment even without physical face-to-face interactions. This meeting is a focal point to gain an insight into the state-of-the-art of the virus bioinformatics research landscape and to interact with researchers in the forefront as well as aspiring young scientists. The meeting featured eight invited and 18 contributed talks in eight sessions on three days, as well as 52 posters, which were presented during three virtual poster sessions. The main topics were: SARS-CoV-2, viral emergence and surveillance, virus-host interactions, viral sequence analysis, virus identification and annotation, phages, and viral diversity. This report summarizes the main research findings and highlights presented at the meeting.


Assuntos
COVID-19 , Vírus não Classificados , Vírus , Biologia Computacional , Vírus de DNA , Humanos , SARS-CoV-2
17.
Elife ; 112022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35437144

RESUMO

The pathogenesis and host-viral interactions of the Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) are convoluted and not well evaluated. Application of the multi-omics system biology approaches, including biological network analysis in elucidating the complex host-viral response, interrogates the viral pathogenesis. The present study aimed to fingerprint the system-level alterations during acute CCHFV-infection and the cellular immune responses during productive CCHFV-replication in vitro. We used system-wide network-based system biology analysis of peripheral blood mononuclear cells (PBMCs) from a longitudinal cohort of CCHF patients during the acute phase of infection and after one year of recovery (convalescent phase) followed by untargeted quantitative proteomics analysis of the most permissive CCHFV-infected Huh7 and SW13 cells. In the RNAseq analysis of the PBMCs, comparing the acute and convalescent-phase, we observed system-level host's metabolic reprogramming towards central carbon and energy metabolism (CCEM) with distinct upregulation of oxidative phosphorylation (OXPHOS) during CCHFV-infection. Upon application of network-based system biology methods, negative coordination of the biological signaling systems like FOXO/Notch axis and Akt/mTOR/HIF-1 signaling with metabolic pathways during CCHFV-infection were observed. The temporal quantitative proteomics in Huh7 showed a dynamic change in the CCEM over time and concordant with the cross-sectional proteomics in SW13 cells. By blocking the two key CCEM pathways, glycolysis and glutaminolysis, viral replication was inhibited in vitro. Activation of key interferon stimulating genes during infection suggested the role of type I and II interferon-mediated antiviral mechanisms both at the system level and during progressive replication.


Crimean-Congo hemorrhagic fever (CCHF) is an emerging disease that is increasingly spreading to new populations. The condition is now endemic in almost 30 countries in sub-Saharan Africa, South-Eastern Europe, the Middle East and Central Asia. CCHF is caused by a tick-borne virus and can cause uncontrolled bleeding. It has a mortality rate of up to 40%, and there are currently no vaccines or effective treatments available. All viruses depend entirely on their hosts for reproduction, and they achieve this through hijacking the molecular machinery of the cells they infect. However, little is known about how the CCHF virus does this and how the cells respond. To understand more about the relationship between the cell's metabolism and viral replication, Neogi, Elaldi et al. studied immune cells taken from patients during an infection and one year later. The gene activity of the cells showed that the virus prefers to hijack processes known as central carbon and energy metabolism. These are the main regulator of the cellular energy supply and the production of essential chemicals. By using cancer drugs to block these key pathways, Neogi, Elaldi et al. could reduce the viral reproduction in laboratory cells. These findings provide a clearer understanding of how the CCHF virus replicates inside human cells. By interfering with these processes, researchers could develop new antiviral strategies to treat the disease. One of the cancer drugs tested in cells, 2-DG, has been approved for emergency use against COVID-19 in some countries. Neogi, Elaldi et al. are now studying this further in animals with the hope of reaching clinical trials in the future.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Antivirais/uso terapêutico , Estudos Transversais , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Humanos , Interferons , Leucócitos Mononucleares
18.
PNAS Nexus ; 1(2): pgac067, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36713328

RESUMO

The new variant of concern (VOC) of SARS-CoV-2, Omicron (B.1.1.529), is genetically very different from other VOCs. We compared Omicron with the preceding VOC Delta (B.1.617.2) and the wildtype (wt) strain (B.1) with respect to their interactions with the antiviral interferon (IFN-alpha/beta) response in infected cells. Our data indicate that IFN induction by Omicron is low and comparable to the wt, whereas Delta showed an increased IFN induction. However, Omicron exceeded both the wt and the Delta strain with respect to the ability to withstand the antiviral state imposed by IFN-alpha.

19.
Nat Commun ; 12(1): 7102, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876589

RESUMO

Various stressors such as viral infection lead to the suppression of cap-dependent translation and the activation of the integrated stress response (ISR), since the stress-induced phosphorylated eukaryotic translation initiation factor 2 [eIF2(αP)] tightly binds to eIF2B to prevent it from exchanging guanine nucleotide molecules on its substrate, unphosphorylated eIF2. Sandfly fever Sicilian virus (SFSV) evades this cap-dependent translation suppression through the interaction between its nonstructural protein NSs and host eIF2B. However, its precise mechanism has remained unclear. Here, our cryo-electron microscopy (cryo-EM) analysis reveals that SFSV NSs binds to the α-subunit of eIF2B in a competitive manner with eIF2(αP). Together with SFSV NSs, eIF2B retains nucleotide exchange activity even in the presence of eIF2(αP), in line with the cryo-EM structures of the eIF2B•SFSV NSs•unphosphorylated eIF2 complex. A genome-wide ribosome profiling analysis clarified that SFSV NSs expressed in cultured human cells attenuates the ISR triggered by thapsigargin, an endoplasmic reticulum stress inducer. Furthermore, SFSV NSs introduced in rat hippocampal neurons and human induced-pluripotent stem (iPS) cell-derived motor neurons exhibits neuroprotective effects against the ISR-inducing stress. Since ISR inhibition is beneficial in various neurological disease models, SFSV NSs may be a promising therapeutic ISR inhibitor.


Assuntos
Fator de Iniciação 2B em Eucariotos/química , Fator de Iniciação 2B em Eucariotos/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Doenças dos Animais , Animais , Linhagem Celular , Microscopia Crioeletrônica , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/genética , Feminino , Humanos , Modelos Moleculares , Neurônios , Phlebovirus , Fosforilação , Ligação Proteica , Ratos , Ratos Wistar , Ribossomos , Proteínas Virais/genética
20.
J Gen Virol ; 102(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34726591

RESUMO

Phleboviruses (order Bunyavirales, family Phenuiviridae) are globally emerging arboviruses with a wide spectrum of virulence. Sandfly fever Sicilian virus (SFSV) is one of the most ubiquitous members of the genus Phlebovirus and associated with a self-limited, incapacitating febrile disease in travellers and military troops. The phleboviral NSs protein is an established virulence factor, acting as antagonist of the antiviral interferon (IFN) system. Consistently, we previously reported that SFSV NSs targets the induction of IFN mRNA synthesis by specifically binding to the DNA-binding domain of the IFN transcription factor IRF3. Here, we further characterized the effect of SFSV and its NSs towards IFN induction, and evaluated its potential to affect the downstream IFN-stimulated signalling and the subsequent transactivation of antiviral interferon-stimulated genes (ISGs). We found that SFSV dampened, but did not entirely abolish type I and type III IFN induction. Furthermore, SFSV NSs did not affect IFN signalling, resulting in substantial ISG expression in infected cells. Hence, although SFSV targets IRF3 to reduce IFN induction, it is not capable of entirely disarming the IFN system in the presence of high basal IRF3 and/or IRF7 levels, and we speculate that this significantly contributes to its low level of virulence.


Assuntos
Interferons/imunologia , Febre por Flebótomos/genética , Febre por Flebótomos/virologia , Phlebovirus/imunologia , Interações Hospedeiro-Patógeno , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Interferons/genética , Febre por Flebótomos/imunologia , Phlebovirus/genética , Phlebovirus/isolamento & purificação , Phlebovirus/patogenicidade , Regulação para Cima , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...