Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(1): pgad362, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38213613

RESUMO

Air quality regulations have led to decreased nitrogen (N) and sulfur deposition across the conterminous United States (CONUS) during the last several decades, particularly in the eastern parts. But it is unclear if declining deposition has altered stream N at large scales. We compared watershed N inputs with N chemistry from over 2,000 CONUS streams where deposition was the largest N input to the watershed. Weighted change analysis showed that deposition declined across most watersheds, especially in the Eastern CONUS. Nationally, declining N deposition was not associated with significant large-scale declines in stream nitrate concentration. Instead, significant increases in stream dissolved organic carbon (DOC) and total organic N (TON) were widespread across regions. Possible mechanisms behind these increases include declines in acidity and/or ionic strength drivers, changes in carbon availability, and/or climate variables. Our results also reveal a declining trend of DOC/TON ratio over the entire study period, primarily influenced by the trend in the Eastern region, suggesting the rate of increase in stream TON exceeded the rate of increase in DOC concentration during this period. Our results illustrate the complexity of nutrient cycling that links long-term atmospheric deposition to water quality. More research is needed to understand how increased dissolved organic N could affect aquatic ecosystems and downstream riverine nutrient export.

2.
Adv Mater ; 36(19): e2311312, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38145390

RESUMO

Polyolefin separators are the most common separators used in rechargeable lithium (Li)-ion batteries. However, the influence of different polyolefin separators on the performance of Li metal batteries (LMBs) has not been well studied. By performing particle injection simulations on the reconstructed three-dimensional pores of different polyethylene separators, it is revealed that the pore structure of the separator has a significant impact on the ion flux distribution, the Li deposition behavior, and consequently, the cycle life of LMBs. It is also discovered that the homogeneity factor of Li-ion toward Li metal electrode is positively correlated to the longevity and reproducibility of LMBs. This work not only emphasizes the importance of the pore structure of polyolefin separators but also provides an economic and effective method to screen favorable separators for LMBs.

3.
J Am Water Resour Assoc ; 59(5): 1162-1179, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-38152418

RESUMO

Eutrophication, harmful algal blooms, and human health impacts are critical environmental challenges resulting from excess nitrogen and phosphorus in surface waters. Yet we have limited information regarding how wetland characteristics mediate water quality across watershed scales. We developed a large, novel set of spatial variables characterizing hydrological flowpaths from wetlands to streams, that is, "wetland hydrological transport variables," to explore how wetlands statistically explain the variability in total nitrogen (TN) and total phosphorus (TP) concentrations across the Upper Mississippi River Basin (UMRB) in the United States. We found that wetland flowpath variables improved landscape-to-aquatic nutrient multilinear regression models (from R2 = 0.89 to 0.91 for TN; R2 = 0.53 to 0.84 for TP) and provided insights into potential processes governing how wetlands influence watershed-scale TN and TP concentrations. Specifically, flowpath variables describing flow-attenuating environments, for example, subsurface transport compared to overland flowpaths, were related to lower TN and TP concentrations. Frequent hydrological connections from wetlands to streams were also linked to low TP concentrations, which likely suggests a nutrient source limitation in some areas of the UMRB. Consideration of wetland flowpaths could inform management and conservation activities designed to reduce nutrient export to downstream waters.

4.
Nat Water ; 1: 370-380, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37389401

RESUMO

Wetland hydrologic connections to downstream waters influence stream water quality. However, no systematic approach for characterizing this connectivity exists. Here using physical principles, we categorized conterminous US freshwater wetlands into four hydrologic connectivity classes based on stream contact and flowpath depth to the nearest stream: riparian, non-riparian shallow, non-riparian mid-depth and non-riparian deep. These classes were heterogeneously distributed over the conterminous United States; for example, riparian dominated the south-eastern and Gulf coasts, while non-riparian deep dominated the Upper Midwest and High Plains. Analysis of a national stream dataset indicated acidification and organic matter brownification increased with connectivity. Eutrophication and sedimentation decreased with wetland area but did not respond to connectivity. This classification advances our mechanistic understanding of wetland influences on water quality nationally and could be applied globally.

5.
Ecosphere ; 14(1)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36762202

RESUMO

River and stream conservation programs have historically focused on a single spatial scale, for example, a watershed or stream site. Recently, the use of landscape information (e.g., land use and land cover) at multiple spatial scales and over large spatial extents has highlighted the importance of incorporating a landscape perspective into stream protection and restoration activities. Previously, we developed a novel framework that links information about watershed-, catchment-, and reach-scale integrity with stream biological condition using scatterplots and a landscape integrity map. Here we examined an application of this approach for streams in urban and other settings in King County, Washington State, United States, where we related stream macroinvertebrate condition to two indices of landscape integrity, the US Environmental Protection Agency's (USEPA) nationally available Index of Watershed Integrity (IWI) and Index of Catchment Integrity (ICI). We generated a scatterplot of IWI versus ICI for sample sites, where points represented site macroinvertebrate condition from poor to good. The same data were also visualized as a landscape integrity map that displayed catchments of King County according to the level of watershed and catchment integrity (high or low IWI/ICI). Almost three-quarters of poor-condition sites were associated with high-integrity watersheds and catchments (i.e., underperforming sites), which suggested that either one or both national indicators were insufficient for this area, and that sites underperformed because of local-scale factors. In response, we used a catchment-scale indicator related to forest condition (PctForestCat) after examining several GIS-based dispersal indicators from the National Hydrography Dataset and other candidates from the USEPA's StreamCat dataset. We then compared the results of the scatterplots and maps based on the current and original analyses and found that many of the sites previously classified as underperforming now performed as expected, that is, they were poor-condition sites in poor-condition catchments. This analysis demonstrates how results based on a national dataset can be improved by developing an alternative that represents regionally important stressors. The methods used to develop an effective landscape indicator based on StreamCat datasets, and the utility of the multiscale approach, could provide important tools for prioritizing, optimizing, and communicating stream conservation actions.

6.
Nat Mater ; 21(12): 1396-1402, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36396958

RESUMO

Cations with suitable sizes to occupy an interstitial site of perovskite crystals have been widely used to inhibit ion migration and promote the performance and stability of perovskite optoelectronics. However, such interstitial doping inevitably leads to lattice microstrain that impairs the long-range ordering and stability of the crystals, causing a sacrificial trade-off. Here, we unravel the evident influence of the valence states of the interstitial cations on their efficacy to suppress the ion migration. Incorporation of a trivalent neodymium cation (Nd3+) effectively mitigates the ion migration in the perovskite lattice with a reduced dosage (0.08%) compared to a widely used monovalent cation dopant (Na+, 0.45%). The photovoltaic performances and operational stability of the prototypical perovskite solar cells are enhanced with a trace amount of Nd3+ doping while minimizing the sacrificial trade-off.

7.
Ecol Indic ; 141: 109046, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991319

RESUMO

Anthropogenic alteration of physical habitat structure in streams and rivers is increasingly recognized as a major cause of impairment worldwide. As part of their assessment of the status and trends in the condition of rivers and streams in the U.S., the U.S. Environmental Protection Agency's (USEPA) National Aquatic Resource Surveys (NARS) quantify and monitor channel size and slope, substrate size and stability, instream habitat complexity and cover, riparian vegetation cover and structure, anthropogenic disturbance activities, and channel-riparian interaction. Like biological assemblages and water chemistry, physical habitat is strongly controlled by natural geoclimatic factors that can obscure or amplify the influence of human activities. We developed a systematic approach to estimate the deviation of observed river and stream physical habitat from that expected in least-disturbed reference conditions. We applied this approach to calculate indices of anthropogenic alteration of three aspects of physical habitat condition in the conterminous U.S. (CONUS): streambed sediment size and stability, riparian vegetation cover, and instream habitat complexity. The precision and responsiveness of these indices led the USEPA to use them to evaluate physical habitat condition in CONUS rivers and streams. The scores of these indices systematically decreased with greater anthropogenic disturbance at river and stream sites in the CONUS and within ecoregions, which we interpret as a response of these physical habitat indices to anthropogenic influences. Although anthropogenic activities negatively influenced all three physical habitat indices in the least-disturbed sites within most ecoregions, natural geoclimatic and geomorphic factors were the dominant influences. For sites over the full range of anthropogenic disturbance, analyses of observed/expected sediment characteristics showed augmented flood flows and basin and riparian agriculture to be the leading predictors of streambed instability and excess fine sediments. Similarly, basin and riparian agriculture and non-agricultural riparian land uses were the leading predictors of reduced riparian vegetation cover complexity in the CONUS and within ecoregions. In turn, these reductions in riparian vegetation cover and complexity, combined with reduced summer low flows, were the leading predictors of instream habitat simplification. We conclude that quantitative measures of physical habitat structure are useful and important indicators of the impacts of human activities on stream and river condition.

8.
Small ; 18(8): e2103887, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34873843

RESUMO

Superior bandgap tunability enables solution-processed halide perovskite a promising candidate for multi-junction photovoltaics (PVs). Particularly, optically coupling wide-gap perovskite by stacking with commercially available PVs such as silicon and CIGS (also known as 4-terminal tandem) simplifies the technology transfer process, and further advances the commercialization potential of perovskite technology. However, compared with matured PV materials and the phase-pure FAPbI3 , wide-gap perovskite still suffers from huge voltage deficits. Here, the authors take advantage of the synergetic effect behind a sequential fluoride and organic ammonium salt surface passivation strategy to control non-radiative energy losses, and obtained a 17.7% efficiency in infrared-transparent wide-gap perovskite solar cells (21.1% for opaque device), and achieved efficiencies of over 25% when stacked with commercial Si and CIGS products with original PCEs of 18-20% under a 4-terminal working condition.

9.
Earth Sci Rev ; 235: 1-24, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36970305

RESUMO

Headwater streams and inland wetlands provide essential functions that support healthy watersheds and downstream waters. However, scientists and aquatic resource managers lack a comprehensive synthesis of national and state stream and wetland geospatial datasets and emerging technologies that can further improve these data. We conducted a review of existing United States (US) federal and state stream and wetland geospatial datasets, focusing on their spatial extent, permanence classifications, and current limitations. We also examined recent peer-reviewed literature for emerging methods that can potentially improve the estimation, representation, and integration of stream and wetland datasets. We found that federal and state datasets rely heavily on the US Geological Survey's National Hydrography Dataset for stream extent and duration information. Only eleven states (22%) had additional stream extent information and seven states (14%) provided additional duration information. Likewise, federal and state wetland datasets primarily use the US Fish and Wildlife Service's National Wetlands Inventory (NWI) Geospatial Dataset, with only two states using non-NWI datasets. Our synthesis revealed that LiDAR-based technologies hold promise for advancing stream and wetland mapping at limited spatial extents. While machine learning techniques may help to scale-up these LiDAR-derived estimates, challenges related to preprocessing and data workflows remain. High-resolution commercial imagery, supported by public imagery and cloud computing, may further aid characterization of the spatial and temporal dynamics of streams and wetlands, especially using multi-platform and multi-temporal machine learning approaches. Models integrating both stream and wetland dynamics are limited, and field-based efforts must remain a key component in developing improved headwater stream and wetland datasets. Continued financial and partnership support of existing databases is also needed to enhance mapping and inform water resources research and policy decisions.

10.
Sci Adv ; 7(46): eabj1799, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757790

RESUMO

Wide-bandgap (WBG) mixed-halide perovskites as the front cell absorber are accomplishing perovskite-based tandem solar cells with over 29% power conversion efficiency. However, their large voltage deficits limit their ultimate performance. Only a handful of studies probe the fundamental mechanisms underlying the voltage deficits, which remain an unsolved challenge in the field. In this study, we investigate the formation dynamics and defect physics of WBG mixed-halide perovskites in contrast with their corresponding triiodide-based perovskites. Our results show that the inclusion of bromide introduced a halide homogenization process that occurs during the perovskite growth stage from an initial bromide-rich phase toward the final target stoichiometry. We further elucidated a physical model that correlates the role of bromide with the formation dynamics, defect physics, and eventual optoelectronic properties of the film. This work provides a fundamental and unique perspective toward understanding the performance-limiting factors affecting WBG mixed-halide perovskites.

11.
Ecol Indic ; 1222021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33897301

RESUMO

Lakes face multiple anthropogenic pressures that can substantially alter their hydrology. Dams and land use in the watershed (e.g., irrigated agriculture) can modify lake water regimes beyond natural ranges, and changing climate may exacerbate anthropogenic stresses on lake hydrology. However, we lack cost-effective indicators to quantify anthropogenic hydrologic alteration potential in lakes at regional and national extents. We developed a framework to rank lakes by the potential for dams and land use to alter lake hydrology (HydrAP) that can be applied at a national scale. The HydrAP framework principles are that 1) dams are primary drivers of lake hydro-alteration, 2) land use activities are secondary drivers that alter watershed hydrology, and 3) topographic relief limits where land use and dams are located on the landscape. We ranked lakes in the United States Environmental Protection Agency National Lakes Assessment (NLA) on a HydrAP scale from zero to seven, where a zero indicates lakes with no potential for anthropogenic hydro-alteration, and a seven indicates large dams and/or intensive land use with high potential to alter lake hydrology. We inferred HydrAP population distributions in the conterminous US (CONUS) using the NLA probabilistic weights. Half of CONUS lakes had moderate to high hydro-alteration potential (HydrAP ranks 3-7), the other half had minimal to no hydro-alteration potential (HydrAP ranks 0-2). HydrAP ranks generally corresponded with natural and man-made lake classes, but >15% of natural lakes had moderate to high HydrAP ranks and ~10% of man-made lakes had low HydrAP ranks. The Great Plains, Appalachians, and Coastal Plains had the largest percentages (>50%) of high HydrAP lakes, and the West and Midwest had the lowest percentages (~30%). Water residence time (τ) and water-level change were associated with HydrAP ranks, demonstrating the framework's intended ability to differentiate anthropogenic stressors that can alter lake hydrology. Consistently across ecoregions high HydrAP lakes had shorter τ. But HydrAP relationships with water-level change varied by ecoregion. In the West and Appalachians, high HydrAP lakes experienced excessive water-level declines compared to low-ranked lakes. In contrast, high HydrAP lakes in the Great Plains and Midwest showed stable water levels compared to low-ranked lakes. These differences imply that water management in western and eastern mountainous regions may result in large water-level fluctuations, but water management in central CONUS may promote water-level stabilization. The HydrAP framework using accessible, national datasets can support large-scale lake assessments and be adapted to specific locations where data are available.

12.
J Am Chem Soc ; 143(18): 6781-6786, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33915050

RESUMO

Postfabrication surface treatment strategies have been instrumental to the stability and performance improvements of halide perovskite photovoltaics in recent years. However, a consensus understanding of the complex reconstruction processes occurring at the surface is still lacking. Here, we combined complementary surface-sensitive and depth-resolved techniques to investigate the mechanistic reconstruction of the perovskite surface at the microscale level. We observed a reconstruction toward a more PbI2-rich top surface induced by the commonly used solvent isopropyl alcohol (IPA). We discuss several implications of this reconstruction on the surface thermodynamics and energetics. Particularly, our observations suggest that IPA assists in the adsorption process of organic ammonium salts to the surface to enhance their defect passivation effects.

13.
Arct Antarct Alp Res ; 52(1): 435-449, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-33132766

RESUMO

The Matanuska-Susitna Borough is the fastest growing region in the State of Alaska and is impacted by a number of human activities. We conducted a multiscale assessment of the stressors facing the borough by developing and mapping the Index of Watershed Integrity (IWI) and Index of Catchment Integrity (the latter considers stressors in areas surrounding individual stream segments exclusive of upstream areas). The assessment coincided with the borough's stormwater management planning. We adapted the list of anthropogenic stressors used in the original conterminous United States IWI application to reflect the borough's geography, human activity, and data availability. This analysis also represents an early application of the NHDPlus High Resolution geospatial framework and the first use of the framework in an IWI study. We also explored how remediation of one important stressor, culverts, could impact watershed integrity at the catchment and watershed scales. Overall, we found that the integrity scores for the Matanuska-Susitna basin were high compared to the conterminous United States. Low integrity scores did occur in the rapidly developing Wasilla-Palmer core area. We also found that culvert remediation had a larger proportional impact in catchments with fewer stressors.

14.
J Am Water Resour Assoc ; 56(3): 450-471, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32699495

RESUMO

Establishing baseline hydrologic characteristics for lakes in the U.S. is critical to evaluate changes to lake hydrology. We used the U.S. EPA National Lakes Assessment 2007 and 2012 surveys to assess hydrologic characteristics of a population of ~45,000 lakes in the conterminous U.S. based on probability samples of ~1,000 lakes/yr distributed across nine ecoregions. Lake hydrologic study variables include water-level drawdown (i.e., vertical decline and horizontal littoral exposure) and two water stable isotope-derived parameters: evaporation-to-inflow (E:I) and water residence time. We present 1) national and regional distributions of the study variables for both natural and man-made lakes and 2) differences in these characteristics between 2007 and 2012. In 2007, 59% of the population of U.S. lakes had Greater than normal or Excessive drawdown relative to water levels in ecoregional reference lakes with minimal human disturbances; while in 2012, only 20% of lakes were significantly drawn down beyond normal ranges. Water isotope-derived variables did not differ significantly between survey years in contrast to drawdown. Median E:I was 20% indicating that flow-through processes dominated lake water regimes. For 75% of U.S. lakes, water residence time was < 1 year and was longer in natural vs. man-made lakes. Our study provides baseline ranges to assess local and regional lake hydrologic status and inform management decisions in changing environmental conditions.

15.
Sci Total Environ ; 737: 139699, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32531512

RESUMO

Incorporating information on landscape condition (or integrity) across multiple spatial scales and over large spatial extents in biological assessments may allow for a more integrated measure of stream biological condition and better management of streams. However, these systems are often assessed and managed at an individual scale (e.g., a single watershed) without a larger regional multiscale context. In this paper, our goals were: (1) To develop a conceptual framework that could combine stream biological condition to abiotic landscape integrity (or, conversely, stressor) data at three spatial scales: watershed, catchment and stream-reach scale, to enable more targeted management actions. Measures of landscape integrity and stressors are negatively related, i.e., integrity on a 0-1 scale is equal or equivalent to stressors on a 1-0 scale. (2) To develop the framework in such a way that allows operational flexibility, whereby different indicators can be used to represent biological condition, and landscape integrity (or stressors) at various scales. (3) To provide different examples of the framework's use to demonstrate the flexibility of its application and relevance to management. Examples include stream biological assessments from different regions and states across the U.S. for fish, macroinvertebrates and diatoms using a variety of assessment tools (e.g., the Biological Condition Gradient (BCG), and an Index of Biotic Integrity (IBI)). Landscape integrity indicators comprise U.S. EPA's nationally available Index of Watershed Integrity (IWI) and Index of Catchment Integrity (ICI), and state and regional derived watershed and stream-reach scale integrity indicators. Scatterplots and a landscape integrity map were used to relate samples of stream condition classes (e.g., good, fair, poor) to watershed, catchment and stream-reach scale integrity. This framework and approach could provide a powerful tool for prioritizing, targeting, and communicating management actions to protect and restore stream habitats, and for informing the spatial extent at which management is applied.


Assuntos
Monitoramento Ambiental , Rios , Agricultura , Animais , Ecossistema , Peixes
16.
Environ Manage ; 65(5): 602-617, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32200409

RESUMO

Sustainable development supports watershed processes and functions. To aid the sustainable development of the western Balkans' transboundary river and lake basins, the Regional Environmental Center for Central and Eastern Europe and the US Environmental Protection Agency (EPA) adapted the EPA's Index of Watershed Integrity (IWI) following the devasting 2014 floods in Albania, Bosnia and Herzegovina, Kosovo, North Macedonia, Montenegro, and Serbia. The IWI evaluates six watershed functions based on a suite of anthropogenic stressors (e.g., impervious surfaces, reservoirs). A key feature of the IWI is its ability to accumulate the impact of upstream activities of any specific location in a river network. A novel feature of the IWI, compared with other watershed assessment tools, is its capacity to provide actionable information at the local scale. IWI scores-ranging from 0 (low integrity) to 1 (high integrity)-calculated for the 1084 catchments of the study area indicated highest integrity in the Alpine geographic region (mean = 0.55, standard deviation (SD) = 0.11) and intermediate to lowest integrity within the Mediterranean (mean = 0.49, SD = 0.12) and Continental (mean = 0.40, SD = 0.10) geographic regions. The IWI results are presented hierarchically for data analysts (stressor, functional component, Index of Catchment Integrity and IWI), ecologists (stream/catchment, watershed, basin), and managers (local, national, international). We provide real-world examples for managers, and suggestions for improving the assessment.


Assuntos
Monitoramento Ambiental , Rios , Albânia , Península Balcânica , Europa Oriental
17.
Environ Monit Assess ; 191(Suppl 1): 296, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222417

RESUMO

We analyzed data from 1138 wetland sites across the conterminous United States (US) as part of the 2011 National Wetland Condition Assessment (NWCA) to investigate the response of indicators of wetland quality to indicators of human disturbance at regional and continental scales. The strength and nature of these relationships in wetlands have rarely been examined over large regions, due to the paucity of large-scale datasets. Wetland response indicators were a multimetric index of vegetation condition (VMMI), percent relative cover of alien plant species, soil lead and phosphorus, and water column total nitrogen and total phosphorus. Site-level disturbance indices were generated from field observations of disturbance types within a circular 140-m radius area around the sample point. Summary indices were calculated representing disturbances for ditching, damming, filling/erosion, hardening, vegetation replacement, and vegetation removal. Landscape-level disturbance associated with agricultural and urban land cover, roads, and human population were based on GIS data layers quantified in 200, 500, and 1000-m circular buffers around each sample point. Among these three buffer sizes, the landscape disturbance indicators were highly correlated and had similar relationships with the response indictors. Consequently, only the 1000-m buffer data were used for subsequent analyses. Disturbance-response models built using only landscape- or only site-level disturbance variables generally explained a small portion of the variance in the response variables (R2 < 0.2), whereas models using both types of disturbance data were better at predicting wetland responses. The VMMI was the response variable with the strongest relationship to the disturbances assessed in the NWCA (national model R2 = 0.251). National multiple regression models for the soil and water chemistry and percent alien cover responses to disturbance indices were not significant. The generally low percentage of significant models and the wide variation in predictor variables suggests that stressor-response relationships vary considerably across the diversity of wetland types and landscape settings found across the conterminous US. Logistic regression modeling was more informative, resulting in significant national and regional models predicting site presence/absence of alien species and/or the concentration of lead in wetland soils above background.


Assuntos
Monitoramento Ambiental , Modelos Teóricos , Áreas Alagadas , Agricultura , Humanos , Espécies Introduzidas , Plantas , Solo/química , Estados Unidos , Urbanização
18.
Environ Monit Assess ; 191(Suppl 1): 268, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222669

RESUMO

The US Environmental Protection Agency (US EPA) initiated planning in 2007 and conducted field work in 2011 for the first National Wetland Condition Assessment (NWCA) as part of the National Aquatic Resource Surveys (NARS). It complements the US Fish and Wildlife Service (USFWS) National Wetland Status and Trends (S&T) program that estimates wetland acres nationally. The NWCA used a stratified, unequal probability survey design based on wetland information from S&T plots to select 900 sites for the conterminous 48 states. Based on site evaluation information, the NWCA estimates that there are 94.9 (± 6.20) million acres of wetlands in the NWCA target wetland population (reported in acres to be consistent with S&T). Not all of the estimated target population acres could be sampled due to accessibility and field issues. Based on the sites that could be sampled, the sampled population for the NWCA is estimated to be 62.2 (± 5.28) million acres of wetland area. Landowner denial for access was the main reason (24.7% ± 3.5%) for the sampled population being smaller than the target population, and physical inaccessibility was the second reason (6.8% ± 2.1%). The NWCA 2011 survey design was successful in enabling a national survey for wetland condition to be conducted and coordinated with the USFWS S&T survey of wetland extent. The NWCA 2016 survey design has been modified to address sample frame issues resulting from the difference in S&T focusing only on national estimates and NWCA focusing on national and regional estimates.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Áreas Alagadas , Animais , Inquéritos e Questionários , Estados Unidos , United States Environmental Protection Agency/organização & administração , United States Environmental Protection Agency/estatística & dados numéricos
19.
Freshw Sci ; 37: 208-221, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29963332

RESUMO

Natural and human-related landscape features influence the ecology and water quality of lakes. Summarizing these features in a hydrologically meaningful way is critical to understanding and managing lake ecosystems. Such summaries are often done by delineating watershed boundaries of individual lakes. However, many technical challenges are associated with delineating hundreds or thousands of lake watersheds at broad spatial extents. These challenges can limit the application of analyses and models to new, unsampled locations. We present the Lake-Catchment (LakeCat) Dataset (https://www.epa.gov/national-aquatic-resource-surveys/lakecat) of watershed features for 378,088 lakes within the conterminous USA. We describe the methods we used to: 1) delineate lake catchments, 2) hydrologically connect nested lake catchments, and 3) generate several hundred watershed-level metrics that summarize both natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, and mines) features. We illustrate how this data set can be used with a random forest model to predict the probability of lake eutrophication by combining LakeCat with data from US Environmental Protection Agency's National Lakes Assessment (NLA). This model correctly predicted the trophic state of 72% of NLA lakes, and we applied the model to predict the probability of eutrophication at 297,071 unsampled lakes across the conterminous USA. The large suite of LakeCat metrics could be used to improve analyses of lakes at broad spatial extents, improve the applicability of analyses to unsampled lakes, and ultimately improve the management of these important ecosystems.

20.
Ecol Indic ; 85: 1133-1148, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29628801

RESUMO

Watershed integrity is the capacity of a watershed to support and maintain the full range of ecological processes and functions essential to sustainability. Using information from EPA's StreamCat dataset, we calculated and mapped an Index of Watershed Integrity (IWI) for 2.6 million watersheds in the conterminous US with first-order approximations of relationships between stressors and six watershed functions: hydrologic regulation, regulation of water chemistry, sediment regulation, hydrologic connectivity, temperature regulation, and habitat provision. Results show high integrity in the western US, intermediate integrity in the southern and eastern US, and the lowest integrity in the temperate plains and lower Mississippi Valley. Correlation between the six functional components was high (r = 0.85-0.98). A related Index of Catchment Integrity (ICI) was developed using local drainages of individual stream segments (i.e., excluding upstream information). We evaluated the ability of the IWI and ICI to predict six continuous site-level indicators with regression analyses - three biological indicators and principal components derived from water quality, habitat, and combined water quality and habitat variables - using data from EPA's National Rivers and Streams Assessment. Relationships were highly significant, but the IWI only accounted for 1-12% of the variation in the four biological and habitat variables. The IWI accounted for over 25% of the variation in the water quality and combined principal components nationally, and 32-39% in the Northern and Southern Appalachians. We also used multinomial logistic regression to compare the IWI with the categorical forms of the three biological indicators. Results were consistent: we found positive associations but modest results. We compared how the IWI and ICI predicted the water quality PC relative to agricultural and urban land use. The IWI or ICI are the best predictors of the water quality PC for the CONUS and six of the nine ecoregions, but they only perform marginally better than agriculture in most instances. However, results suggest that agriculture would not be appropriate in all parts of the country, and the index is meant to be responsive to all stressors. The IWI in its present form (available through the StreamCat website; https://www.epa.gov/national-aquatic-resource-surveys/streamcat) could be useful for management efforts at multiple scales, especially when combined with information on site condition. The IWI could be improved by incorporating empirical or literature-derived relationships between functional components and stressors. However, limitations concerning the absence of data for certain stressors should be considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...