Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35860194

RESUMO

Selective bulk metal-organic frameworks (MOFs) have exhibited great potential in biomedical applications. However, topical treatments and drug elution coatings will require uniform films as drug delivery systems. This work studies the use of surface supportive MOF thin films for drug loading and releasing. More specifically, we focus on an iron-containing MOF, MIL-88B(Fe), on a COOH-terminated self-assembled monolayer (SAM) modified Au surface for encapsulating ibuprofen as a model drug. A combined experimental and computational approach was employed to study the fabrication of MIL-88B(Fe) film on functionalized Au surfaces. We used several surface characterization techniques, including infrared spectroscopy and scanning electron microscopy, to confirm the chemical composition and morphological changes of the surface after each modification step. The resulting MIL-88B(Fe) thin film was found capable of loading 8.7 wt% of ibuprofen using quartz crystal microbalance analysis. Moreover, we applied cluster simulations to study the binding mechanisms of MIL-88B(Fe) and its interactions with ibuprofen based on the density functional theory (DFT). The unsaturated Fe site was confirmed kinetically more favorable to bind to the COOH-end group on the SAM. Hydrogen bonding and π-CH interactions between ibuprofen and MIL-88B(Fe) promote ibuprofen being retained inside of the cages of MIL-88B(Fe).

2.
ACS Omega ; 5(7): 3418-3427, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32118156

RESUMO

Iron-based metal-organic frameworks (Fe-MOFs) have emerged as promising candidates for drug delivery applications due to their low toxicity, structural flexibility, and safe biodegradation in a physiological environment. Here, we studied two types of Fe-MOFs: MIL-53 and MIL-88B, for in vitro drug loading and releasing of ibuprofen as a model drug. Both Fe-MOFs are based on the same iron clusters and organic ligands but form different crystal structures as a result of two different nucleation pathways. The MIL-53 structure demonstrates one-dimensional channels, while MIL-88B exhibits a three-dimensional cage structure. Our studies show that MIL-53 adsorbs more ibuprofen (37.0 wt %) compared to MIL-88B (19.5 wt %). A controlled drug release was observed in both materials with a slower elution pattern in the case of the ibuprofen-encapsulated MIL-88B. This indicates that a complex cage structure of MIL-88 is beneficial to control the rate of drug release. A linear correlation was found between cumulative drug release and the degree of material degradation, suggesting the biodegradation of Fe-MILs as the main drug elution mechanism. The cytotoxicity of MIL-88B was evaluated in vitro with NIH-3T3 Swiss mouse fibroblasts, and it shows that MIL-88B has no adverse effects on cell viability up to 0.1 mg/mL. This low toxicity was attributed to the morphology of MIL-88B nanocrystals. The very low toxicity and controlled drug release behavior of Fe-MIL-88B suggest that better materials for drug-delivery applications can be created by controlling not only the composition but also the crystal structure and nanoparticle morphology of the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...