Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Comput Appl ; 34(1): 67-78, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33935376

RESUMO

We present an approach to discriminate SARS-CoV-2 virus types based on their RNA sequence descriptions avoiding a sequence alignment. For that purpose, sequences are preprocessed by feature extraction and the resulting feature vectors are analyzed by prototype-based classification to remain interpretable. In particular, we propose to use variants of learning vector quantization (LVQ) based on dissimilarity measures for RNA sequence data. The respective matrix LVQ provides additional knowledge about the classification decisions like discriminant feature correlations and, additionally, can be equipped with easy to realize reject options for uncertain data. Those options provide self-controlled evidence, i.e., the model refuses to make a classification decision if the model evidence for the presented data is not sufficient. This model is first trained using a GISAID dataset with given virus types detected according to the molecular differences in coronavirus populations by phylogenetic tree clustering. In a second step, we apply the trained model to another but unlabeled SARS-CoV-2 virus dataset. For these data, we can either assign a virus type to the sequences or reject atypical samples. Those rejected sequences allow to speculate about new virus types with respect to nucleotide base mutations in the viral sequences. Moreover, this rejection analysis improves model robustness. Last but not least, the presented approach has lower computational complexity compared to methods based on (multiple) sequence alignment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00521-021-06018-2.

2.
Bioinformatics ; 36(22-23): 5507-5513, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33367605

RESUMO

MOTIVATION: Viruses are the most abundant biological entities and constitute a large reservoir of genetic diversity. In recent years, knowledge about them has increased significantly as a result of dynamic development in life sciences and rapid technological progress. This knowledge is scattered across various data repositories, making a comprehensive analysis of viral data difficult. RESULTS: In response to the need for gathering a comprehensive knowledge of viruses and viral sequences, we developed Virxicon, a lexicon of all experimentally acquired sequences for RNA and DNA viruses. The ability to quickly obtain data for entire viral groups, searching sequences by levels of taxonomic hierarchy-according to the Baltimore classification and ICTV taxonomy-and tracking the distribution of viral data and its growth over time are unique features of our database compared to the other tools. AVAILABILITYAND IMPLEMENTATION: Virxicon is a publicly available resource, updated weekly. It has an intuitive web interface and can be freely accessed at http://virxicon.cs.put.poznan.pl/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA