Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 53: 110188, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38406243

RESUMO

This dataset offers images of mouse brains impacted by photothrombotic stroke in the sensorimotor cortex published by Weber et al. NeuroImage (2024). Data is gathered using two primary techniques: (1) whole-brain ex-vivo magnetic resonance imaging (MRI) and (2) 40 µm thick coronal histological sections that undergo immunofluorescence staining with NeuroTrace. Infarct areas and volumes are assessed through MRI at two distinct time frames-three days (acute) and 28 days (chronic) following photothrombotic stroke induction. Subsequently, the brains are sectioned into 40 µm thick coronal slices, stained with NeuroTrace, and imaged as whole sections. The dataset holds considerable value for reuse, particularly for researchers focused on stroke volume estimation methods as well as those interested in comparing the efficacy of MRI and histological techniques.

2.
Neuroimage ; 287: 120518, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38219841

RESUMO

Stroke volume is a key determinant of infarct severity and an important metric for evaluating treatments. However, accurate estimation of stroke volume can be challenging, due to the often confined 2-dimensional nature of available data. Here, we introduce a comprehensive semi-automated toolkit to reliably estimate stroke volumes based on (1) whole brains ex-vivo magnetic resonance imaging (MRI) and (2) brain sections that underwent immunofluorescence staining. We located and quantified infarct areas from MRI three days (acute) and 28 days (chronic) after photothrombotic stroke induction in whole mouse brains. MRI results were compared with measures obtained from immunofluorescent histologic sections of the same brains. We found that infarct volume determined by post-mortem MRI was highly correlated with a deviation of only 6.6 % (acute) and 4.9 % (chronic) to the measurements as determined in the histological brain sections indicating that both methods are capable of accurately assessing brain tissue damage (Pearson r > 0.9, p < 0.001). The Dice similarity coefficient (DC) showed a high degree of coherence (DC > 0.8) between MRI-delineated regions of interest (ROIs) and ROIs obtained from histologic sections at four to six pre-defined landmarks, with histology-based delineation demonstrating higher inter-operator similarity compared to MR images. We further investigated stroke-related scarring and post-ischemic angiogenesis in cortical peri­infarct regions and described a negative correlation between GFAP+fluorescence intensity and MRI-obtained lesion size.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Camundongos , Animais , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/patologia , Volume Sistólico , Roedores , Acidente Vascular Cerebral/patologia , Imageamento por Ressonância Magnética/métodos , Infarto
3.
Trends Mol Med ; 30(3): 223-238, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272713

RESUMO

Stem cell therapy is an emerging treatment paradigm for stroke patients with remaining neurological deficits. While allogeneic cell transplants overcome the manufacturing constraints of autologous grafts, they can be rejected by the recipient's immune system, which identifies foreign cells through the human leukocyte antigen (HLA) system. The heterogeneity of HLA molecules in the human population would require a very high number of cell lines, which may still be inadequate for patients with rare genetic HLAs. Here, we outline key progress in genetic HLA engineering in pluripotent stem and derived cells to evade the host's immune system, reducing the number of allogeneic cell lines required, and examine safety measures explored in both preclinical studies and upcoming clinical trials.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transplante de Células-Tronco , Linhagem Celular
4.
Front Immunol ; 13: 1080482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569903

RESUMO

Background: Stroke remains a leading cause of disability and death worldwide. It has become apparent that inflammation and immune mediators have a pre-dominant role in initial tissue damage and long-term recovery. Still, different immunosuppressed mouse models are necessary in stroke research e.g., to evaluate therapies using human cell grafts. Despite mounting evidence delineating the importance of inflammation in the stroke pathology, it is poorly described to what extent immune deficiency influences overall stroke outcome. Methods: Here, we assessed the stroke pathology of popular genetic immunodeficient mouse models, i.e., NOD scid gamma (NSG) and recombination activating gene 2 (Rag2-/-) mice as well as pharmacologically immunosuppressed mice and compared them to immune competent, wildtype (WT) C57BL/6J mice three weeks after injury. We performed histology, gene expression, blood serum and behavioural analysis to identify the impact of immunosuppression on stroke progression. Results: We detected changes in microglia activation/macrophage infiltration, scar-forming and vascular repair in immune-suppressed mice three weeks after injury. Transcriptomic analysis of stroked tissue revealed the strongest deviation from WT was observed in NSG mice affecting immunological and angiogenic pathways. Pharmacological immunosuppression resulted in the least variation in gene expression compared with the WT. These anatomical and genetic changes did not affect functional recovery in a time course of three weeks. To determine whether timing of immunosuppression is critical, we compared mice with acute and delayed pharmacological immunosuppression after stroke. Mice with delayed immunosuppression (7d) showed increased inflammatory and scarring responses compared to animals acutely treated with tacrolimus, thus more closely resembling WT pathology. Transplantation of human cells in the brains of immunosuppressed mice led to prolonged cell survival in all immunosuppressed mouse models, which was most consistent in NSG and Rag2-/- mice. Conclusions: We detected distinct anatomical and molecular changes in the stroke pathology between individual immunosuppressed mouse models that should be considered when selecting an appropriate mouse model for stroke research.


Assuntos
Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/genética , Inflamação/patologia , Macrófagos/patologia , Encéfalo/patologia
5.
BMC Biol ; 20(1): 232, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243716

RESUMO

BACKGROUND: Stroke research heavily relies on rodent behavior when assessing underlying disease mechanisms and treatment efficacy. Although functional motor recovery is considered the primary targeted outcome, tests in rodents are still poorly reproducible and often unsuitable for unraveling the complex behavior after injury. RESULTS: Here, we provide a comprehensive 3D gait analysis of mice after focal cerebral ischemia based on the new deep learning-based software (DeepLabCut, DLC) that only requires basic behavioral equipment. We demonstrate a high precision 3D tracking of 10 body parts (including all relevant joints and reference landmarks) in several mouse strains. Building on this rigor motion tracking, a comprehensive post-analysis (with >100 parameters) unveils biologically relevant differences in locomotor profiles after a stroke over a time course of 3 weeks. We further refine the widely used ladder rung test using deep learning and compare its performance to human annotators. The generated DLC-assisted tests were then benchmarked to five widely used conventional behavioral set-ups (neurological scoring, rotarod, ladder rung walk, cylinder test, and single-pellet grasping) regarding sensitivity, accuracy, time use, and costs. CONCLUSIONS: We conclude that deep learning-based motion tracking with comprehensive post-analysis provides accurate and sensitive data to describe the complex recovery of rodents following a stroke. The experimental set-up and analysis can also benefit a range of other neurological injuries that affect locomotion.


Assuntos
Isquemia Encefálica , Aprendizado Profundo , Acidente Vascular Cerebral , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Roedores
6.
J Transl Med ; 20(1): 421, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114512

RESUMO

BACKGROUND: Currently, there is no regenerative therapy for patients with neurological and neurodegenerative disorders. Cell-therapies have emerged as a potential treatment for numerous brain diseases. Despite recent advances in stem cell technology, major concerns have been raised regarding the feasibility and safety of cell therapies for clinical applications. METHODS: We generated good manufacturing practice (GMP)-compatible neural progenitor cells (NPCs) from transgene- and xeno-free induced pluripotent stem cells (iPSCs) that can be smoothly adapted for clinical applications. NPCs were characterized in vitro for their differentiation potential and in vivo after transplantation into wild type as well as genetically immunosuppressed mice. RESULTS: Generated NPCs had a stable gene-expression over at least 15 passages and could be scaled for up to 1018 cells per initially seeded 106 cells. After withdrawal of growth factors in vitro, cells adapted a neural fate and mainly differentiated into active neurons. To ensure a pure NPC population for in vivo applications, we reduced the risk of iPSC contamination by applying micro RNA-switch technology as a safety checkpoint. Using lentiviral transduction with a fluorescent and bioluminescent dual-reporter construct, combined with non-invasive in vivo bioluminescent imaging, we longitudinally tracked the grafted cells in healthy wild-type and genetically immunosuppressed mice as well as in a mouse model of ischemic stroke. Long term in-depth characterization revealed that transplanted NPCs have the capability to survive and spontaneously differentiate into functional and mature neurons throughout a time course of a month, while no residual pluripotent cells were detectable. CONCLUSION: We describe the generation of transgene- and xeno-free NPCs. This simple differentiation protocol combined with the ability of in vivo cell tracking presents a valuable tool to develop safe and effective cell therapies for various brain injuries.


Assuntos
Células-Tronco Pluripotentes Induzidas , MicroRNAs , Células-Tronco Neurais , Animais , Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios
7.
Brain ; 145(10): 3681-3697, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35583160

RESUMO

Severe spinal cord injuries result in permanent paraparesis in spite of the frequent sparing of small portions of white matter. Spared fibre tracts are often incapable of maintaining and modulating the activity of lower spinal motor centres. Effects of rehabilitative training thus remain limited. Here, we activated spared descending brainstem fibres by electrical deep brain stimulation of the cuneiform nucleus of the mesencephalic locomotor region, the main control centre for locomotion in the brainstem, in adult female Lewis rats. We show that deep brain stimulation of the cuneiform nucleus enhances the weak remaining motor drive in highly paraparetic rats with severe, incomplete spinal cord injuries and enables high-intensity locomotor training. Stimulation of the cuneiform nucleus during rehabilitative aquatraining after subchronic (n = 8 stimulated versus n = 7 unstimulated versus n = 7 untrained rats) and chronic (n = 14 stimulated versus n = 9 unstimulated versus n = 9 untrained rats) spinal cord injury re-established substantial locomotion and improved long-term recovery of motor function. We additionally identified a safety window of stimulation parameters ensuring context-specific locomotor control in intact rats (n = 18) and illustrate the importance of timing of treatment initiation after spinal cord injury (n = 14). This study highlights stimulation of the cuneiform nucleus as a highly promising therapeutic strategy to enhance motor recovery after subchronic and chronic incomplete spinal cord injury with direct clinical applicability.


Assuntos
Formação Reticular Mesencefálica , Traumatismos da Medula Espinal , Feminino , Ratos , Animais , Ratos Endogâmicos Lew , Traumatismos da Medula Espinal/terapia , Locomoção/fisiologia , Tronco Encefálico , Medula Espinal , Recuperação de Função Fisiológica/fisiologia
8.
J Vis Exp ; (179)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35156654

RESUMO

Cell therapy has long been an emerging treatment paradigm in experimental neurobiology. However, cell transplantation studies often rely on end-point measurements and can therefore only evaluate longitudinal changes of cell migration and survival to a limited extent. This paper provides a reliable, minimally invasive protocol to transplant and longitudinally track neural progenitor cells (NPCs) in the adult mouse brain. Before transplantation, cells are transduced with a lentiviral vector comprising a bioluminescent (firefly-luciferase) and fluorescent (green fluorescent protein [GFP]) reporter. The NPCs are transplanted into the right cortical hemisphere using stereotaxic injections in the sensorimotor cortex. Following transplantation, grafted cells were detected through the intact skull for up to five weeks (at days 0, 3, 14, 21, 35) with a resolution limit of 6,000 cells using in vivo bioluminescence imaging. Subsequently, the transplanted cells are identified in histological brain sections and further characterized with immunofluorescence. Thus, this protocol provides a valuable tool to transplant, track, quantify, and characterize cells in the mouse brain.


Assuntos
Células-Tronco Neurais , Animais , Encéfalo/metabolismo , Encéfalo/cirurgia , Movimento Celular , Transplante de Células , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Transplante de Células-Tronco/métodos
9.
Brain Pathol ; 31(5): e12999, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34196052

RESUMO

Transplantation of glial enriched progenitors provides therapeutic effects on axonal damage, cognitive and motor function following white matter stroke.


Assuntos
Astrócitos/patologia , Isquemia Encefálica/patologia , Oligodendroglia/patologia , Acidente Vascular Cerebral/patologia , Animais , Isquemia Encefálica/fisiopatologia , Humanos , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Substância Branca/fisiopatologia
10.
Front Physiol ; 11: 586226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262704

RESUMO

Blood brain barrier (BBB) damage is an important pathophysiological feature of ischemic stroke which significantly contributes to development of severe brain injury and therefore is an interesting target for therapeutic intervention. A popular permanent occlusion model to study long term recovery following stroke is the photothrombotic model, which so far has not been anatomically characterized for BBB leakage beyond the acute phase. Here, we observed enhanced BBB permeability over a time course of 3 weeks in peri-infarct and core regions of the ischemic cortex. Slight increases in BBB permeability could also be seen in the contralesional cortex, hippocampus and the cerebellum at different time points, regions where lesion-induced degeneration of pathways is prominent. Severe damage of tight and adherens junctions and loss of pericytes was observed within the peri-infarct region. Overall, the photothrombotic stroke model reproduces a variety of features observed in human stroke and thus, represents a suitable model to study BBB damage and therapeutic approaches interfering with this process.

11.
Sci Rep ; 9(1): 20040, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882970

RESUMO

Angiogenesis is a key restorative process following stroke but has also been linked to increased vascular permeability and blood brain barrier (BBB) disruption. Previous pre-clinical approaches primarily focused on the administration of vascular endothelial growth factor (VEGF) to promote vascular repair after stroke. Although shown to improve angiogenesis and functional recovery from stroke, VEGF increased the risk of blood brain barrier disruption and bleedings to such an extent that its clinical use is contraindicated. As an alternative strategy, antibodies against the neurite growth inhibitory factor Nogo-A have recently been shown to enhance vascular regeneration in the ischemic central nervous system (CNS); however, their effect on vascular permeability is unknown. Here, we demonstrate that antibody-mediated Nogo-A neutralization following stroke has strong pro-angiogenic effects but does not increase vascular permeability as opposed to VEGF. Moreover, VEGF-induced vascular permeability was partially prevented when VEGF was co-administered with anti-Nogo-A antibodies. This study may provide a novel therapeutic strategy for vascular repair and maturation in the ischemic brain.


Assuntos
Indutores da Angiogênese/imunologia , Autoanticorpos/imunologia , Permeabilidade Capilar/imunologia , Proteínas Nogo/imunologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Neovascularização Patológica , Fatores de Crescimento do Endotélio Vascular/administração & dosagem
12.
Proc Natl Acad Sci U S A ; 116(28): 14270-14279, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235580

RESUMO

Stroke is a major cause of serious disability due to the brain's limited capacity to regenerate damaged tissue and neuronal circuits. After ischemic injury, a multiphasic degenerative and inflammatory response is coupled with severely restricted vascular and neuronal repair, resulting in permanent functional deficits. Although clinical evidence indicates that revascularization of the ischemic brain regions is crucial for functional recovery, no therapeutics that promote angiogenesis after cerebral stroke are currently available. Besides vascular growth factors, guidance molecules have been identified to regulate aspects of angiogenesis in the central nervous system (CNS) and may provide targets for therapeutic angiogenesis. In this study, we demonstrate that genetic deletion of the neurite outgrowth inhibitor Nogo-A or one of its corresponding receptors, S1PR2, improves vascular sprouting and repair and reduces neurological deficits after cerebral ischemia in mice. These findings were reproduced in a therapeutic approach using intrathecal anti-Nogo-A antibodies; such a therapy is currently in clinical testing for spinal cord injury. These results provide a basis for a therapeutic blockage of inhibitory guidance molecules to improve vascular and neural repair after ischemic CNS injuries.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Isquemia Encefálica/tratamento farmacológico , Proteínas Nogo/genética , Receptores de Esfingosina-1-Fosfato/genética , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/imunologia , Isquemia Encefálica/patologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/imunologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Proteínas Nogo/antagonistas & inibidores , Proteínas Nogo/imunologia , Tratos Piramidais/efeitos dos fármacos , Tratos Piramidais/patologia , Recuperação de Função Fisiológica/genética , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/imunologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...