Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540673

RESUMO

Despite extensive use of intravitreal anti-vascular endothelial growth factor (anti-VEGF) biologics for over a decade, neovascular age-related macular degeneration (nAMD) or choroidal neovascularization (CNV) continues to be a major cause of irreversible vision loss in developed countries. Many nAMD patients demonstrate persistent disease activity or experience declining responses over time despite anti-VEGF treatment. The underlying mechanisms of anti-VEGF resistance are poorly understood, and no effective treatment strategies are available to date. Here we review evidence from animal models and clinical studies that supports the roles of neovascular remodeling and arteriolar CNV formation in anti-VEGF resistance. Cholesterol dysregulation, inflammation, and ensuing macrophage activation are critically involved in arteriolar CNV formation and anti-VEGF resistance. Combination therapy by neutralizing VEGF and enhancing cholesterol removal from macrophages is a promising strategy to combat anti-VEGF resistance in CNV.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Animais , Humanos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Neovascularização de Coroide/tratamento farmacológico , Fatores de Crescimento do Endotélio Vascular , Colesterol
2.
Genes (Basel) ; 15(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275616

RESUMO

Approximately 6% of adults worldwide suffer from peripheral artery disease (PAD), primarily caused by atherosclerosis of lower limb arteries. Despite optimal medical care and revascularization, many PAD patients remain symptomatic and progress to critical limb ischemia (CLI) and risk major amputation. Delivery of pro-angiogenic factors as proteins or DNA, stem, or progenitor cells confers vascular regeneration and functional recovery in animal models of CLI, but the effects are not well replicated in patients and no pro-angiogenic biopharmacological procedures are approved in the US, EU, or China. The reasons are unclear, but animal models that do not represent clinical PAD/CLI are implicated. Consequently, it is unclear whether the obstacles to clinical success lie in the toxic biochemical milieu of human CLI, or in procedures that were optimized on inappropriate models. The question is significant because the former case requires abandonment of current strategies, while the latter encourages continued optimization. These issues are discussed in the context of relevant preclinical and clinical data, and it is concluded that preclinical mouse models that include age and atherosclerosis as the only comorbidities that are consistently present and active in clinical trial patients are necessary to predict clinical success. Of the reviewed materials, no biopharmacological procedure that failed in clinical trials had been tested in animal models that included advanced age and atherosclerosis relevant to PAD/CLI.


Assuntos
Terapia Biológica , Doença Arterial Periférica , Adulto , Animais , Humanos , Camundongos , China , Ensaios Clínicos como Assunto , Isquemia/etiologia , Extremidade Inferior , Doença Arterial Periférica/complicações , Doença Arterial Periférica/tratamento farmacológico
3.
Biomedicines ; 11(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38137453

RESUMO

Alzheimer's disease (AD) is characterized by progressive accumulations of extracellular amyloid-beta (Aß) aggregates from soluble oligomers to insoluble plaques and hyperphosphorylated intraneuronal tau, also from soluble oligomers to insoluble neurofibrillary tangles (NFTs). Tau and Aß complexes spread from the entorhinal cortex of the brain to interconnected regions, where they bind pattern recognition receptors on microglia and astroglia to trigger inflammation and neurotoxicity that ultimately lead to neurodegeneration and clinical AD. Systemic inflammation is initiated by Aß's egress into the circulation, which may be secondary to microglial activation and can confer both destructive and reparative actions. Microglial activation pathways and downstream drivers of Aß/NFT neurotoxicity, including inflammatory regulators, are primary targets for AD therapy. Osteopontin (OPN), an inflammatory cytokine and biomarker of AD, is implicated in Aß clearance and toxicity, microglial activation, and inflammation, and is considered to be a potential therapeutic target. Here, using the most relevant works from the literature, we review and contextualize the evidence for a central role of OPN and associated inflammation in AD.

4.
Proc Natl Acad Sci U S A ; 120(48): e2308342120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983492

RESUMO

COVID-19 pneumonia causes acute lung injury and acute respiratory distress syndrome (ALI/ARDS) characterized by early pulmonary endothelial and epithelial injuries with altered pulmonary diffusing capacity and obstructive or restrictive physiology. Growth hormone-releasing hormone receptor (GHRH-R) is expressed in the lung and heart. GHRH-R antagonist, MIA-602, has been reported to modulate immune responses to bleomycin lung injury and inflammation in granulomatous sarcoidosis. We hypothesized that MIA-602 would attenuate rVSV-SARS-CoV-2-induced pulmonary dysfunction and heart injury in a BSL-2 mouse model. Male and female K18-hACE2tg mice were inoculated with SARS-CoV-2/USA-WA1/2020, BSL-2-compliant recombinant VSV-eGFP-SARS-CoV-2-Spike (rVSV-SARS-CoV-2), or PBS, and lung viral load, weight loss, histopathology, and gene expression were compared. K18-hACE2tg mice infected with rVSV-SARS-CoV-2 were treated daily with subcutaneous MIA-602 or vehicle and conscious, unrestrained plethysmography performed on days 0, 3, and 5 (n = 7 to 8). Five days after infection mice were killed, and blood and tissues collected for histopathology and protein/gene expression. Both native SARS-CoV-2 and rVSV-SARS-CoV-2 presented similar patterns of weight loss, infectivity (~60%), and histopathologic changes. Daily treatment with MIA-602 conferred weight recovery, reduced lung perivascular inflammation/pneumonia, and decreased lung/heart ICAM-1 expression compared to vehicle. MIA-602 rescued altered respiratory rate, increased expiratory parameters (Te, PEF, EEP), and normalized airflow parameters (Penh and Rpef) compared to vehicle, consistent with decreased airway inflammation. RNASeq followed by protein analysis revealed heightened levels of inflammation and end-stage necroptosis markers, including ZBP1 and pMLKL induced by rVSV-SARS-CoV-2, that were normalized by MIA-602 treatment, consistent with an anti-inflammatory and pro-survival mechanism of action in this preclinical model of COVID-19 pneumonia.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Camundongos , Masculino , Feminino , Animais , SARS-CoV-2 , COVID-19/patologia , Pulmão/patologia , Inflamação/patologia , Síndrome do Desconforto Respiratório/patologia , Redução de Peso , Camundongos Transgênicos , Modelos Animais de Doenças
5.
BMC Nephrol ; 24(1): 300, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828432

RESUMO

BACKGROUND: Alport syndrome (AS) is caused by mutations in type IV collagen genes that typically target and compromise the integrity of basement membranes in kidney, ocular, and sensorineural cochlear tissues. Type IV and V collagens are also integral components of arterial walls, and whereas collagenopathies including AS are implicated in aortic disease, the incidence of aortic aneurysm in AS is unknown probably because of underreporting. Consequently, AS is not presently considered an independent risk factor for aortic aneurysm and more detailed case studies including histological evidence of basement membrane abnormalities are needed to determine such a possible linkage. CASE PRESENTATION: Here, we present unique histopathological findings of an ascending aortic aneurysm collected at the time of surgery from an AS patient wherein hypertension was the only other known risk factor. CONCLUSIONS: The studies reveal classical histological features of aortic aneurysm, including atheroma, lymphocytic infiltration, elastin disruption, and myxoid degeneration with probable AS association.


Assuntos
Aneurisma da Aorta Ascendente , Aneurisma Aórtico , Nefrite Hereditária , Humanos , Nefrite Hereditária/complicações , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Rim/patologia , Colágeno Tipo IV/genética , Aneurisma Aórtico/diagnóstico por imagem , Aneurisma Aórtico/genética
6.
Biomedicines ; 11(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37509549

RESUMO

Neovascular age-related macular degeneration (nAMD) with choroidal neovascularization (CNV) is a leading cause of blindness in the elderly in developed countries. The disease is currently treated with anti-angiogenic biologics, including aflibercept, against vascular endothelial growth factor (VEGF) but with limited efficacy, treatment resistance and requirement for frequent intravitreal injections. Although anti-VEGF gene therapy may provide sustained therapy that obviates multiple injections, the efficacy and side effects related to VEGF pathway targeting remain, and alternative strategies to block angiogenesis independently of VEGF are needed. We recently reported that secretogranin III (Scg3) induces only pathological angiogenesis through VEGF-independent pathways, and Scg3-neutralizing antibodies selectively inhibit pathological but not physiological angiogenesis in mouse proliferative retinopathy models. Anti-Scg3 antibodies synergize dose-dependently with VEGF inhibitors in a CNV model. Here, we report that an adeno-associated virus-8 (AAV8) vector expressing anti-Scg3 Fab ameliorated CNV with an efficacy similar to that of AAV-aflibercept in a mouse model. This study is the first to test an anti-angiogenic gene therapy protocol that selectively targets pathological angiogenesis via a VEGF-independent mechanism. The findings support further safety/efficacy studies of anti-Scg3 gene therapy as monotherapy or combined with anti-VEGF to treat nAMD.

7.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445707

RESUMO

Diabetic retinopathy (DR), a leading cause of vision loss in working-age adults, induces mosaic patterns of vasculopathy that may be associated with spatial heterogeneity of intraretinal endothelial cells. We recently reported that secretogranin III (Scg3), a neuron-derived angiogenic and vascular leakage factor, selectively binds retinal vessels of diabetic but not healthy mice. Here, we investigated endothelial heterogeneity of three retinal vascular plexuses in DR pathogenesis and the therapeutic implications. Our unique in vivo ligand binding assay detected a 22.7-fold increase in Scg3 binding to retinal vessels of diabetic mice relative to healthy mice. Functional immunohistochemistry revealed that Scg3 predominantly binds to the DR-stressed CD31- deep retinal vascular plexus but not to the relatively healthy CD31+ superficial and intermediate plexuses within the same diabetic retina. In contrast, VEGF bound to healthy and diabetic retinal vessels indiscriminately with low activity. FITC-dextran assays indicated that selectively increased retinal vascular leakage coincides with Scg3 binding in diabetic mice that was independent of VEGF, whereas VEGF-induced leakage did not distinguish between diabetic and healthy mice. Dose-response curves showed that the anti-Scg3 humanized antibody (hAb) and anti-VEGF aflibercept alleviated DR leakage with equivalent efficacies, and that the combination acted synergistically. These findings suggest: (i) the deep plexus is highly sensitive to DR; (ii) Scg3 binding to the DR deep plexus coincides with the loss of CD31 and compromised endothelial junctions; (iii) anti-Scg3 hAb alleviates vascular leakage by selectively targeting the DR-stressed deep plexus within the same diabetic retina; (iv) combined anti-Scg3 and anti-VEGF treatments synergistically ameliorate DR through distinct mechanisms.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Animais , Camundongos , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Células Endoteliais/metabolismo , Diabetes Mellitus Experimental/patologia , Retina/metabolismo , Vasos Retinianos/metabolismo
8.
Front Pediatr ; 11: 1144230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287630

RESUMO

Vertical transmission of SARS-CoV-2 from mother to fetus is widely accepted. Whereas most infected neonates present with mild symptoms or are asymptomatic, respiratory distress syndrome (RDS) and abnormal lung images are significantly more frequent in COVID-19 positive neonates than in non-infected newborns. Fatality is rare and discordant meta-analyses of case reports and series relating perinatal maternal COVID-19 status to neonatal disease severity complicate their extrapolation as prognostic indicators. A larger database of detailed case reports from more extreme cases will be required to establish therapeutic guidelines and allow informed decision making. Here we report an unusual case of a 28 weeks' gestation infant with perinatally acquired SARS-CoV-2, who developed severe protracted respiratory failure. Despite intensive care from birth with first line anti-viral and anti-inflammatory therapy, respiratory failure persisted, and death ensued at 5 months. Lung histopathology showed severe diffuse bronchopneumonia, and heart and lung immunohistochemistry confirmed macrophage infiltration, platelet activation and neutrophil extracellular trap formation consistent with late multisystem inflammation. To our knowledge, this is the first report of SARS CoV-2 pulmonary hyperinflammation in a preterm newborn with fatal outcome.

9.
Drug Discov Today ; 28(3): 103430, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36343915

RESUMO

Despite advancements in omics technologies, including proteomics and transcriptomics, identification of therapeutic targets remains challenging. Ligandomics recently emerged as a unique technology of functional proteomics for global profiling of cell-binding protein ligands. When applied to diseased versus healthy vasculatures, comparative ligandomics systematically maps novel disease-restricted ligands that allow selective targeting of pathological but not physiological pathways, providing high efficacy with intrinsic safety. In this review, we discuss the potential of cellular ligands as therapeutic targets and summarize the development of ligandomics. We further compare the advantages and limitations of different omics technologies for drug target discovery and discuss target selection criteria to improve drug R&D success rates.


Assuntos
Sistemas de Liberação de Medicamentos , Proteômica , Descoberta de Drogas
10.
JACC Case Rep ; 6: 101644, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36348978

RESUMO

A 35-year-old woman with history of cardiovascular disease presented with shortness of breath, lightheadedness, fatigue, chest pain, and premature ventricular contractions 3 weeks after her second COVID-19 vaccine. Symptoms subsided following catheter ablation and ibuprofen except for chest pain and fatigue, which persisted following ablation and subsequent SARS-CoV-2 infection. The case suggests causal associations between COVID-19 vaccine/infection and recurrence of cardiovascular disease, including long-COVID-like symptoms. (Level of Difficulty: Advanced.).

11.
J Am Heart Assoc ; 11(17): e027216, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36056728

RESUMO

Background The pathways of diastolic dysfunction and heart failure with preserved ejection fraction driven by lipotoxicity with metabolic syndrome are incompletely understood. Thus, there is an urgent need for animal models that accurately mimic the metabolic and cardiovascular phenotypes of this phenogroup for mechanistic studies. Methods and Results Hyperlipidemia was induced in WT-129 mice by 4 weeks of biweekly poloxamer-407 intraperitoneal injections with or without a single intravenous injection of adeno-associatedvirus 9-cardiac troponin T-low-density lipoprotein receptor (n=31), or single intravenous injection with adeno-associatedvirus 9-cardiac troponin T-low-density lipoprotein receptor alone (n=10). Treatment groups were compared with untreated or placebo controls (n=37). Echocardiography, blood pressure, whole-body plethysmography, ECG telemetry, activity wheel monitoring, and biochemical and histological changes were assessed at 4 to 8 weeks. At 4 weeks, double treatment conferred diastolic dysfunction, preserved ejection fraction, and increased left ventricular wall thickness. Blood pressure and whole-body plethysmography results were normal, but respiration decreased at 8 weeks (P<0.01). ECG and activity wheel monitoring, respectively, indicated heart block and decreased exercise activity (P<0.001). Double treatment promoted elevated myocardial lipids including total cholesterol, fibrosis, increased wet/dry lung (P<0.001) and heart weight/body weight (P<0.05). Xanthelasma, ascites, and cardiac ischemia were evident in double and single (p407) groups. Sudden death occurred between 6 and 12 weeks in double and single (p407) treatment groups. Conclusions We present a novel model of heart failure with preserved ejection fraction driven by dyslipidemia where mice acquire diastolic dysfunction, arrhythmia, cardiac hypertrophy, fibrosis, pulmonary congestion, exercise intolerance, and preserved ejection fraction in the absence of obesity, hypertension, kidney disease, or diabetes. The model can be applied to dissect pathways of metabolic syndrome that drive diastolic dysfunction in this lipotoxicity-mediated heart failure with preserved ejection fraction phenogroup mimic.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Hiperlipidemias , Síndrome Metabólica , Animais , Modelos Animais de Doenças , Hiperlipidemias/complicações , Lipoproteínas LDL , Camundongos , Volume Sistólico/fisiologia , Troponina T , Função Ventricular Esquerda/fisiologia
12.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743114

RESUMO

Alport syndrome (AS) is a hereditary renal disorder with no etiological therapy. In the preclinical Col4a3-/- model of AS, disease progression and severity vary depending on mouse strain. The sodium-glucose cotransporter 2 (SGLT2) is emerging as an attractive therapeutic target in cardiac/renal pathologies, but its application to AS remains untested. This study investigates cardiorespiratory function and SGLT2 renal expression in Col4a3-/- mice from three different genetic backgrounds, 129x1/SvJ, C57Bl/6 and Balb/C. male Col4a3-/- 129x1/SvJ mice displayed alterations consistent with heart failure with preserved ejection fraction (HFpEF). Female, but not male, C57Bl/6 and Balb/C Col4a3-/- mice exhibited mild changes in systolic and diastolic function of the heart by echocardiography. Male C57Bl/6 Col4a3-/- mice presented systolic dysfunction by invasive hemodynamic analysis. All strains except Balb/C males demonstrated alterations in respiratory function. SGLT2 expression was significantly increased in AS compared to WT mice from all strains. However, cardiorespiratory abnormalities and SGLT2 over-expression were significantly less in AS Balb/C mice compared to the other two strains. Systolic blood pressure was significantly elevated only in mutant 129x1/SvJ mice. The results provide further evidence for strain-dependent cardiorespiratory and hypertensive phenotype variations in mouse AS models, corroborated by renal SGLT2 expression, and support ongoing initiatives to develop SGLT2 inhibitors for the treatment of AS.


Assuntos
Autoantígenos/metabolismo , Colágeno Tipo IV/metabolismo , Insuficiência Cardíaca , Nefrite Hereditária , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nefrite Hereditária/genética , Fenótipo , Transportador 2 de Glucose-Sódio/genética , Volume Sistólico
13.
Front Biosci (Landmark Ed) ; 27(4): 130, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35468689

RESUMO

BACKGROUND: To circumvent possible systemic side effects, anti-angiogenic drugs targeting vascular endothelial growth factor (VEGF) for ocular neovascular diseases in adults are approved only for intravitreal administration. However, intravitreal injection itself can elicit injection-related adverse effects, and premature eyes of infants with retinopathy of prematurity (ROP) may be particularly susceptible to intravitreal injection. Therefore, an unmet clinical need is to develop safe systemic anti-angiogenic therapies for ROP. We recently reported that secretogranin III (Scg3) is a disease-restricted angiogenic factor and that systemic anti-Scg3 mAb alleviates ROP in animal models with minimal side effects on developing eyes and organs. The aim of this study is to investigate the safety and efficacy of a humanized anti-Scg3 antibody via systemic administration. METHODS: We analyzed the safety and efficacy of a humanized anti-Scg3 antibody Fab fragment (hFab) delivered by intraperitoneal injection in oxygen-induced retinopathy (OIR) mice, a surrogate model of ROP. RESULTS: The results showed that systemic anti-Scg3 hFab effectively alleviated pathological retinal neovascularization in OIR mice with similar efficacy to the anti-VEGF drug aflibercept. Systemic aflibercept conferred significant adverse side effects in neonatal mice, including reduced body weight, abnormalities in retinal and renal development, and retarded physiological neovascularization, whereas systemic anti-Scg3 hFab elicited no such side effects. CONCLUSIONS: The findings suggest that systemic anti-Scg3 hFab is a safe and effective therapy for OIR and support further development for ROP treatment.


Assuntos
Oxigênio , Retinopatia da Prematuridade , Animais , Humanos , Recém-Nascido , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Retinopatia da Prematuridade/induzido quimicamente , Retinopatia da Prematuridade/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
14.
Cell Mol Life Sci ; 79(1): 63, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35006382

RESUMO

Conventional angiogenic factors, such as vascular endothelial growth factor (VEGF), regulate both pathological and physiological angiogenesis indiscriminately, and their inhibitors may elicit adverse side effects. Secretogranin III (Scg3) was recently reported to be a diabetes-restricted VEGF-independent angiogenic factor, but the disease selectivity of Scg3 in retinopathy of prematurity (ROP), a retinal disease in preterm infants with concurrent pathological and physiological angiogenesis, was not defined. Here, using oxygen-induced retinopathy (OIR) mice, a surrogate model of ROP, we quantified an exclusive binding of Scg3 to diseased versus healthy developing neovessels that contrasted sharply with the ubiquitous binding of VEGF. Functional immunohistochemistry visualized Scg3 binding exclusively to disease-related disorganized retinal neovessels and neovascular tufts, whereas VEGF bound to both disorganized and well-organized neovessels. Homozygous deletion of the Scg3 gene showed undetectable effects on physiological retinal neovascularization but markedly reduced the severity of OIR-induced pathological angiogenesis. Furthermore, anti-Scg3 humanized antibody Fab (hFab) inhibited pathological angiogenesis with similar efficacy to anti-VEGF aflibercept. Aflibercept dose-dependently blocked physiological angiogenesis in neonatal retinas, whereas anti-Scg3 hFab was without adverse effects at any dose and supported a therapeutic window at least 10X wider than that of aflibercept. Therefore, Scg3 stringently regulates pathological but not physiological angiogenesis, and anti-Scg3 hFab satisfies essential criteria for development as a safe and effective disease-targeted anti-angiogenic therapy for ROP.


Assuntos
Inibidores da Angiogênese/farmacologia , Cromograninas/imunologia , Cromograninas/metabolismo , Neovascularização Patológica/genética , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/patologia , Animais , Capilares/metabolismo , Cromograninas/antagonistas & inibidores , Cromograninas/genética , Modelos Animais de Doenças , Fragmentos Fab das Imunoglobulinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/efeitos adversos , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão/farmacologia , Neovascularização Retiniana/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
15.
FASEB J ; 36(1): e22106, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34918375

RESUMO

Choroidal neovascularization (CNV), a leading cause of blindness in the elderly, is routinely treated with vascular endothelial growth factor (VEGF) inhibitors that have limited efficacy and potentially adverse side effects. An unmet clinical need is to develop novel therapies against other angiogenic factors for alternative or combination treatment to improve efficacy and safety. We recently described secretogranin III (Scg3) as a disease-selective angiogenic factor, causally linked to diabetic retinopathy and acting independently of the VEGF pathway. An important question is whether such a disease-selective Scg3 pathway contributes to other states of pathological angiogenesis beyond diabetic retinopathy. By applying a novel in vivo endothelial ligand binding assay, we found that the binding of Scg3 to CNV vessels in live mice was markedly increased over background binding to healthy choriocapillaris and blocked by an Scg3-neutralizing antibody, whereas VEGF showed no such differential binding. Intravitreal injection of anti-Scg3 humanized antibody Fab (hFab) inhibited Matrigel-induced CNV with similar efficacy to the anti-VEGF drug aflibercept. Importantly, a combination of anti-Scg3 hFab and aflibercept synergistically alleviated CNV. Homozygous deletion of the Scg3 gene markedly reduced CNV severity and abolished the therapeutic activity of anti-Scg3 hFab, but not aflibercept, suggesting a role for Scg3 in VEGF-independent CNV pathogenesis and therapy. Our work demonstrates the stringent disease selectivity of Scg3 binding and positions anti-Scg3 hFab as a next-generation disease-targeted anti-angiogenic therapy for CNV.


Assuntos
Neovascularização de Coroide/metabolismo , Cromograninas/metabolismo , Transdução de Sinais , Animais , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/genética , Cromograninas/genética , Feminino , Fragmentos Fab das Imunoglobulinas/farmacologia , Masculino , Camundongos , Camundongos Knockout , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Dis Markers ; 2021: 4933194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970357

RESUMO

Crosstalk between molecular regulators miR-126, hypoxia-inducible factor 1-alpha (HIF-1-α), and high-mobility group box-1 (HMGB1) contributes to the regulation of inflammation and angiogenesis in multiple physiological and pathophysiological settings. Here, we present evidence of an overriding role for miR-126 in the regulation of HMGB1 and its downstream proinflammatory effectors in endothelial cells subjected to hypoxia with concurrent acidosis (H/A). Methods. Primary mouse endothelial cells (PMEC) were exposed to hypoxia or H/A to simulate short or chronic low-flow ischemia, respectively. RT-qPCR quantified mRNA transcripts, and proteins were measured by western blot. ROS were quantified by fluorogenic ELISA and luciferase reporter assays employed to confirm an active miR-126 target in the HMGB1 3'UTR. Results. Enhanced expression of miR-126 in PMECs cultured under neutral hypoxia was suppressed under H/A, whereas the HMGB1 expression increased sequentially under both conditions. Enhanced expression of HMGB1 and downstream inflammation markers was blocked by the premiR-126 overexpression and optimized by antagomiR. Compared with neutral hypoxia, H/A suppressed the HIF-1α expression independently of miR-126. The results show that HMGB1 and downstream effectors are optimally induced by H/A relative to neutral hypoxia via crosstalk between hypoxia signaling, miR-126, and HIF-1α, whereas B-cell lymphoma 2(Bcl2), a HIF-1α, and miR-126 regulated gene expressed optimally under neutral hypoxia. Conclusion. Inflammatory responses of ECs to H/A are dynamically regulated by the combined actions of hypoxia, miR-126, and HIF-1α on the master regulator HMGB1. The findings may be relevant to vascular diseases including atherosclerotic occlusion and interiors of plaque where coexisting hypoxia and acidosis promote inflammation as a defining etiology.


Assuntos
Hipóxia Celular/fisiologia , Células Endoteliais/metabolismo , Proteína HMGB1/fisiologia , Inflamação/etiologia , MicroRNAs/fisiologia , Acidose , Animais , Células Cultivadas , Camundongos
17.
Cell Mol Life Sci ; 78(16): 5977-5985, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34230991

RESUMO

Diabetic retinopathy (DR) is the leading cause of vision loss in working adults in developed countries. The disease traditionally classified as a microvascular complication of diabetes is now widely recognized as a neurovascular disorder resulting from disruption of the retinal neurovascular unit (NVU). The NVU comprising retinal neurons, glia and vascular cells coordinately regulates blood flow, vascular density and permeability to maintain homeostasis. Disturbance of the NVU during DR can lead to vision-threatening clinical manifestations. A limited number of signaling pathways have been identified for intercellular communication within the NVU, including vascular endothelial growth factor (VEGF), the master switch for angiogenesis. VEGF inhibitors are now widely used to treat DR, but their limited efficacy implies that other signaling molecules are involved in the pathogenesis of DR. By applying a novel screening technology called comparative ligandomics, we recently discovered secretogranin III (Scg3) as a unique DR-selective angiogenic and vascular leakage factor with therapeutic potential for DR. This review proposes neuron-derived Scg3 as the first diabetes-selective neurovascular regulator and discusses important features of Scg3 inhibition for next-generation disease-targeted anti-angiogenic therapies of DR.


Assuntos
Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Animais , Cromograninas/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Neurônios/metabolismo , Neurônios/patologia , Retina/metabolismo , Retina/patologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062733

RESUMO

Retinopathy of prematurity (ROP) is an ocular vascular disease affecting premature infants, characterized by pathological retinal neovascularization (RNV), dilated and tortuous retinal blood vessels, and retinal or vitreous hemorrhages that may lead to retinal detachment, vision impairment and blindness. Compared with other neovascular diseases, ROP is unique because of ongoing and concurrent physiological and pathological angiogenesis in the developing retina. While the disease is currently treated by laser or cryotherapy, anti-vascular endothelial growth factor (VEGF) agents have been extensively investigated but are not approved in the U.S. because of safety concerns that they negatively interfere with physiological angiogenesis of the developing retina. An ideal therapeutic strategy would selectively inhibit pathological but not physiological angiogenesis. Our group recently described a novel strategy that selectively and safely alleviates pathological RNV in animal models of ROP by targeting secretogranin III (Scg3), a disease-restricted angiogenic factor. The preclinical profile of anti-Scg3 therapy presents a high potential for next-generation disease-targeted anti-angiogenic therapy for the ROP indication. This review focuses on retinal vessel development in neonates, the pathogenesis of ROP and its underlying molecular mechanisms, including different animal models, and provides a summary of current and emerging therapies.


Assuntos
Cromograninas/genética , Neovascularização Patológica/tratamento farmacológico , Oxigênio/uso terapêutico , Retinopatia da Prematuridade/tratamento farmacológico , Animais , Animais Recém-Nascidos , Cromograninas/antagonistas & inibidores , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Retina/efeitos dos fármacos , Retina/crescimento & desenvolvimento , Retina/patologia , Retinopatia da Prematuridade/genética , Retinopatia da Prematuridade/patologia , Fator A de Crescimento do Endotélio Vascular/genética
19.
Am J Physiol Heart Circ Physiol ; 320(5): H1862-H1872, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33769915

RESUMO

There are currently no Food and Drug Administration-approved treatments for heart failure with preserved ejection fraction (HFpEF). Here we compared the effects of exercise with and without α/ß-adrenergic blockade with carvedilol in Col4a3-/- Alport mice, a model of the phenogroup 3 subclass of HFpEF with underlying renal dysfunction. Alport mice were assigned to the following groups: no treatment control (n = 29), carvedilol (n = 11), voluntary exercise (n = 9), and combination carvedilol and exercise (n = 8). Cardiac function was assessed by echocardiography after 4-wk treatments. Running activity of Alport mice was similar to wild types at 1 mo of age but markedly reduced at 2 mo (1.3 ± 0.40 vs. 4.5 ± 1.02 km/day, P < 0.05). There was a nonsignificant trend for increased running activity at 2 mo by carvedilol in the combination treatment group. Combination treatments conferred increased body weight of Col4a3-/- mice (22.0 ± 1.18 vs. 17.8 ± 0.29 g in untreated mice, P < 0.01), suggesting improved physiology, and heart rates declined by similar increments in all carvedilol-treatment groups. The combination treatment improved systolic parameters; stroke volume (30.5 ± 1.99 vs. 17.8 ± 0.77 µL, P < 0.0001) as well as ejection fraction and global longitudinal strain compared with controls. Myocardial performance index was normalized by all interventions (P < 0.0001). Elevated osteopontin plasma levels in control Alport mice were significantly lowered only by combination treatment, and renal function of the Alport group assessed by urine albumin creatinine ratio was significantly improved by all treatments. The results support synergistic roles for exercise and carvedilol to augment cardiac systolic function of Alport mice with moderately improved renal functions but no change in diastole.NEW & NOTEWORTHY In an Alport mouse model of heart failure with preserved ejection fraction (HFpEF), exercise and carvedilol synergistically improved systolic function without affecting diastole. Carvedilol alone or in combination with exercise also improved kidney function. Molecular analyses indicate that the observed improvements in cardiorenal functions were mediated at least in part by effects on serum osteopontin and related inflammatory cytokine cascades. The work presents new potential therapeutic targets and approaches for HFpEF.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carvedilol/farmacologia , Colágeno Tipo IV/deficiência , Terapia por Exercício , Insuficiência Cardíaca/terapia , Nefrite Hereditária/terapia , Osteopontina/sangue , Disfunção Ventricular Esquerda/terapia , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Autoantígenos/genética , Biomarcadores/sangue , Colágeno Tipo IV/genética , Terapia Combinada , Diástole , Modelos Animais de Doenças , Regulação para Baixo , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Camundongos da Linhagem 129 , Camundongos Knockout , Nefrite Hereditária/sangue , Nefrite Hereditária/genética , Nefrite Hereditária/fisiopatologia , Recuperação de Função Fisiológica , Sístole , Disfunção Ventricular Esquerda/sangue , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia
20.
Am J Physiol Regul Integr Comp Physiol ; 320(5): R575-R587, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33565369

RESUMO

Approximately 14% of the general population suffer from chronic kidney disease that can lead to acute kidney injury (AKI), a condition with up to 50% mortality for which there is no effective treatment. Hypertension, diabetes, and cardiovascular disease are the main comorbidities, and more than 660,000 Americans have kidney failure. ß2-Adrenergic receptors (ß2ARs) have been extensively studied in association with lung and cardiovascular disease, but with limited scope in kidney and renal diseases. ß2ARs are expressed in multiple parts of the kidney including proximal and distal convoluted tubules, glomeruli, and podocytes. Classical and noncanonical ß2AR signaling pathways interface with other intracellular mechanisms in the kidney to regulate important cellular functions including renal blood flow, electrolyte balance and salt handling, and tubular function that in turn exert control over critical physiology and pathology such as blood pressure and inflammatory responses. Nephroprotection through activation of ß2ARs has surfaced as a promising field of investigation; however, there is limited data on the pharmacology and potential side effects of renal ß2AR modulation. Here, we provide updates on some of the major areas of preclinical kidney research involving ß2AR signaling that have advanced to describe molecular pathways and identify potential drug targets some of which are currently under clinical development for the treatment of kidney-related diseases.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Nefropatias/tratamento farmacológico , Rim/efeitos dos fármacos , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Animais , Humanos , Rim/metabolismo , Rim/fisiopatologia , Nefropatias/metabolismo , Nefropatias/fisiopatologia , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...