Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38319079

RESUMO

Reptiles exhibit a variety of modes of sex determination, including both temperature-dependent and genetic mechanisms. Among those species with genetic sex determination, sex chromosomes of varying heterogamety (XX/XY and ZZ/ZW) have been observed with different degrees of differentiation. Karyotype studies have demonstrated that Gila monsters (Heloderma suspectum) have ZZ/ZW sex determination and this system is likely homologous to the ZZ/ZW system in the Komodo dragon (Varanus komodoensis), but little else is known about their sex chromosomes. Here, we report the assembly and analysis of the Gila monster genome. We generated a de novo draft genome assembly for a male using 10X Genomics technology. We further generated and analyzed short-read whole genome sequencing and whole transcriptome sequencing data for three males and three females. By comparing female and male genomic data, we identified four putative Z chromosome scaffolds. These putative Z chromosome scaffolds are homologous to Z-linked scaffolds identified in the Komodo dragon. Further, by analyzing RNAseq data, we observed evidence of incomplete dosage compensation between the Gila monster Z chromosome and autosomes and a lack of balance in Z-linked expression between the sexes. In particular, we observe lower expression of the Z in females (ZW) than males (ZZ) on a global basis, though we find evidence suggesting local gene-by-gene compensation. This pattern has been observed in most other ZZ/ZW systems studied to date and may represent a general pattern for female heterogamety in vertebrates.


Assuntos
Animais Peçonhentos , Heloderma suspectum , Lagartos , Animais , Masculino , Feminino , Lagartos/genética , Cromossomos Sexuais/genética , Cariótipo , Mecanismo Genético de Compensação de Dose
2.
PLoS One ; 18(11): e0287609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37910456

RESUMO

Many forces influence genetic variation across the genome including mutation, recombination, selection, and demography. Increased mutation and recombination both lead to increases in genetic diversity in a region-specific manner, while complex demographic patterns shape patterns of diversity on a more global scale. While these processes act across the entire genome, the X chromosome is particularly interesting because it contains several distinct regions that are subject to different combinations and strengths of these forces: the pseudoautosomal regions (PARs) and the X-transposed region (XTR). The X chromosome thus can serve as a unique model for studying how genetic and demographic forces act in different contexts to shape patterns of observed variation. We therefore sought to explore diversity, divergence, and linkage disequilibrium in each region of the X chromosome using genomic data from 26 human populations. Across populations, we find that both diversity and substitution rate are consistently elevated in PAR1 and the XTR compared to the rest of the X chromosome. In contrast, linkage disequilibrium is lowest in PAR1, consistent with the high recombination rate in this region, and highest in the region of the X chromosome that does not recombine in males. However, linkage disequilibrium in the XTR is intermediate between PAR1 and the autosomes, and much lower than the non-recombining X. Finally, in addition to these global patterns, we also observed variation in ratios of X versus autosomal diversity consistent with population-specific evolutionary history as well. While our results were generally consistent with previous work, two unexpected observations emerged. First, our results suggest that the XTR does not behave like the rest of the recombining X and may need to be evaluated separately in future studies. Second, the different regions of the X chromosome appear to exhibit unique patterns of linked selection across different human populations. Together, our results highlight profound regional differences across the X chromosome, simultaneously making it an ideal system for exploring the action of evolutionary forces as well as necessitating its careful consideration and treatment in genomic analyses.


Assuntos
Cromossomos Humanos X , Receptor PAR-1 , Masculino , Humanos , Cromossomos Humanos X/genética , Seleção Genética , Cromossomo X , Mutação , Genômica , Demografia , Variação Genética
3.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961120

RESUMO

Phenotypic divergence between closely related species, including bonobos and chimpanzees (genus Pan), is largely driven by variation in gene regulation. The 3D structure of the genome mediates gene expression; however, genome folding differences in Pan are not well understood. Here, we apply machine learning to predict genome-wide 3D genome contact maps from DNA sequence for 56 bonobos and chimpanzees, encompassing all five extant lineages. We use a pairwise approach to estimate 3D divergence between individuals from the resulting contact maps in 4,420 1 Mb genomic windows. While most pairs were similar, ∼17% were predicted to be substantially divergent in genome folding. The most dissimilar maps were largely driven by single individuals with rare variants that produce unique 3D genome folding in a region. We also identified 89 genomic windows where bonobo and chimpanzee contact maps substantially diverged, including several windows harboring genes associated with traits implicated in Pan phenotypic divergence. We used in silico mutagenesis to identify 51 3D-modifying variants in these bonobo-chimpanzee divergent windows, finding that 34 or 66.67% induce genome folding changes via CTCF binding motif disruption. Our results reveal 3D genome variation at the population-level and identify genomic regions where changes in 3D folding may contribute to phenotypic differences in our closest living relatives.

4.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37163099

RESUMO

Reptiles exhibit a variety of modes of sex determination, including both temperature-dependent and genetic mechanisms. Among those species with genetic sex determination, sex chromosomes of varying heterogamety (XX/XY and ZZ/ZW) have been observed with different degrees of differentiation. Karyotype studies have demonstrated that Gila monsters (Heloderma suspectum) have ZZ/ZW sex determination and this system is likely homologous to the ZZ/ZW system in the Komodo dragon (Varanus komodoensis), but little else is known about their sex chromosomes. Here, we report the assembly and analysis of the Gila monster genome. We generated a de novo draft genome assembly for a male using 10X Genomics technology. We further generated and analyzed short-read whole genome sequencing and whole transcriptome sequencing data for three males and three females. By comparing female and male genomic data, we identified four putative Z-chromosome scaffolds. These putative Z-chromosome scaffolds are homologous to Z-linked scaffolds identified in the Komodo dragon. Further, by analyzing RNAseq data, we observed evidence of incomplete dosage compensation between the Gila monster Z chromosome and autosomes and a lack of balance in Z-linked expression between the sexes. In particular, we observe lower expression of the Z in females (ZW) than males (ZZ) on a global basis, though we find evidence suggesting local gene-by-gene compensation. This pattern has been observed in most other ZZ/ZW systems studied to date and may represent a general pattern for female heterogamety in vertebrates.

5.
Proc Natl Acad Sci U S A ; 119(35): e2116681119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994669

RESUMO

The platyrrhine family Cebidae (capuchin and squirrel monkeys) exhibit among the largest primate encephalization quotients. Each cebid lineage is also characterized by notable lineage-specific traits, with capuchins showing striking similarities to Hominidae such as high sensorimotor intelligence with tool use, advanced cognitive abilities, and behavioral flexibility. Here, we take a comparative genomics approach, performing genome-wide tests for positive selection across five cebid branches, to gain insight into major periods of cebid adaptive evolution. We uncover candidate targets of selection across cebid evolutionary history that may underlie the emergence of lineage-specific traits. Our analyses highlight shifting and sustained selective pressures on genes related to brain development, longevity, reproduction, and morphology, including evidence for cumulative and diversifying neurobiological adaptations across cebid evolution. In addition to generating a high-quality reference genome assembly for robust capuchins, our results lend to a better understanding of the adaptive diversification of this distinctive primate clade.


Assuntos
Evolução Biológica , Cebidae , Genoma , Genômica , Animais , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Cebidae/anatomia & histologia , Cebidae/classificação , Cebidae/genética , Cebidae/fisiologia , Cebus/anatomia & histologia , Cebus/genética , Cebus/fisiologia , Cebus/psicologia , Cognição , Genoma/genética , Hominidae/fisiologia , Hominidae/psicologia , Inteligência/genética , Longevidade/genética , Filogenia , Reprodução/genética , Saimiri/anatomia & histologia , Saimiri/genética , Saimiri/fisiologia , Saimiri/psicologia , Seleção Genética , Comportamento de Utilização de Ferramentas
6.
Proc Natl Acad Sci U S A ; 119(17): e2200858119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35452306

RESUMO

Admixture appears increasingly ubiquitous in the evolutionary history of various taxa, including humans. Such gene flow likely also occurred among our closest living relatives: bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). However, our understanding of their evolutionary history has been limited by studies that do not consider all Pan lineages or do not analyze all lineages simultaneously, resulting in conflicting demographic models. Here, we investigate this gap in knowledge using nucleotide site patterns calculated from whole-genome sequences from the autosomes of 71 bonobos and chimpanzees, representing all five extant Pan lineages. We estimated demographic parameters and compared all previously proposed demographic models for this clade. We further considered sex bias in Pan evolutionary history by analyzing the site patterns from the X chromosome. We show that 1) 21% of autosomal DNA in eastern chimpanzees derives from western chimpanzee introgression and that 2) all four chimpanzee lineages share a common ancestor about 987,000 y ago, much earlier than previous estimates. In addition, we suggest that 3) there was male reproductive skew throughout Pan evolutionary history and find evidence of 4) male-biased dispersal from western to eastern chimpanzees. Collectively, these results offer insight into bonobo and chimpanzee evolutionary history and suggest considerable differences between current and historic chimpanzee biogeography.


Assuntos
Pan paniscus , Pan troglodytes , Animais , Evolução Biológica , Feminino , Genoma , Masculino , Nucleotídeos , Pan paniscus/genética , Pan troglodytes/genética
7.
Sci Rep ; 11(1): 11535, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075066

RESUMO

Quantifying the continuous variation in human scalp hair morphology is of interest to anthropologists, geneticists, dermatologists and forensic scientists, but existing methods for studying hair form are time-consuming and not widely used. Here, we present a high-throughput sample preparation protocol for the imaging of both longitudinal (curvature) and cross-sectional scalp hair morphology. Additionally, we describe and validate a new Python package designed to process longitudinal and cross-sectional hair images, segment them, and provide measurements of interest. Lastly, we apply our methods to an admixed African-European sample (n = 140), demonstrating the benefit of quantifying hair morphology over classification, and providing evidence that the relationship between cross-sectional morphology and curvature may be an artefact of population stratification rather than a causal link.


Assuntos
Cabelo/anatomia & histologia , Processamento de Imagem Assistida por Computador , Couro Cabeludo , Estudos Transversais , Humanos
8.
Sci Rep ; 11(1): 10571, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011996

RESUMO

Breast cancers exhibit intratumoral heterogeneity associated with disease progression and therapeutic resistance. To define the sources and the extent of heterogeneity, we performed an in-depth analysis of the genomic architecture of three chemoradiation-naïve breast cancers with well-defined clinical features including variable ER, PR, ERBB2 receptor expression and two distinct pathogenic BRCA2mut genotypes. The latter included a germ line carrier and a patient with a somatic variant. In each case we combined DNA content-based flow cytometry with whole exome sequencing and genome wide copy number variant (CNV) analysis of distinct populations sorted from multiple (4-18) mapped biopsies within the tumors and involved lymph nodes. Interrogating flow-sorted tumor populations from each biopsy provided an objective method to distinguish fixed and variable genomic lesions in each tumor. Notably we show that tumors exploit CNVs to fix mutations and deletions in distinct populations throughout each tumor. The identification of fixed genomic lesions that are shared or unique within each tumor, has broad implications for the study of tumor heterogeneity including the presence of tumor markers and therapeutic targets, and of candidate neoepitopes in breast and other solid tumors that can advance more effective treatment and clinical management of patients with disease.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Evolução Molecular , Aneuploidia , Biomarcadores Tumorais , Humanos
9.
Sci Adv ; 7(17)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33893095

RESUMO

Sifakas (genus Propithecus) are critically endangered, large-bodied diurnal lemurs that eat leaf-based diets and show corresponding anatomical and microbial adaptations to folivory. We report on the genome assembly of Coquerel's sifaka (P. coquereli) and the resequenced genomes of Verreaux's (P. verreauxi), the golden-crowned (P. tattersalli), and the diademed (P. diadema) sifakas. We find high heterozygosity in all sifakas compared with other primates and endangered mammals. Demographic reconstructions nevertheless suggest declines in effective population size beginning before human arrival on Madagascar. Comparative genomic analyses indicate pervasive accelerated evolution in the ancestral sifaka lineage affecting genes in several complementary pathways relevant to folivory, including nutrient absorption and xenobiotic and fatty acid metabolism. Sifakas show convergent evolution at the level of the pathway, gene family, gene, and amino acid substitution with other folivores. Although sifakas have relatively generalized diets, the physiological challenges of habitual folivory likely led to strong selection.

10.
Mol Ecol Resour ; 21(1): 170-182, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32985084

RESUMO

The ability to generate genomic data from wild animal populations has the potential to give unprecedented insight into the population history and dynamics of species in their natural habitats. However, for many species, it is impossible legally, ethically or logistically to obtain tissue samples of quality sufficient for genomic analyses. In this study we evaluate the success of multiple sources of genetic material (faeces, urine, dentin and dental calculus) and several capture methods (shotgun, whole-genome, exome) in generating genome-scale data in wild eastern chimpanzees (Pan troglodytes schweinfurthii) from Gombe National Park, Tanzania. We found that urine harbours significantly more host DNA than other sources, leading to broader and deeper coverage across the genome. Urine also exhibited a lower rate of allelic dropout. We found exome sequencing to be far more successful than both shotgun sequencing and whole-genome capture at generating usable data from low-quality samples such as faeces and dental calculus. These results highlight urine as a promising and untapped source of DNA that can be noninvasively collected from wild populations of many species.


Assuntos
DNA/urina , Sequenciamento do Exoma , Pan troglodytes , Animais , Genômica , Pan troglodytes/genética , Tanzânia
11.
Mol Phylogenet Evol ; 152: 106920, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32768453

RESUMO

Among primates, susceptibility to yellow fever (YFV), a single-stranded (ss) RNA virus, ranges from complete resistance to high susceptibility. Howler monkeys (genus Alouatta) are the most susceptible to YFV. In order to identify Alouatta-specific genetic factors that may be responsible for their susceptibility, we collected skin samples from howler monkey museum specimens of the species A. caraya and A. guariba clamitans. We compared the rate of nonsynonymous to synonymous (dN/dS) changes of Toll-like receptor (TLR) 7 and TLR8, the two genes responsible for detecting all ssRNA viruses, across the Primate order. Overall, we found that the TLR7 gene is under stronger purifying selection in howler monkeys compared to other New World and Old World primates, but TLR8 is under the same selective pressure. When we evaluated dN/dS at each codon, we found six codons under positive selection in Alouatta TLR8 and two codons under positive selection in TLR7. The changes in TLR7 are unique to A. guariba clamitans and are found in functionally important regions likely to affect detection of ssRNA viruses by TLR7/TLR8, as well as downstream signaling. These amino acid differences in A. guariba clamitans may play a role in YFV susceptibility. These results have implications for identifying genetic factors affecting YFV susceptibility in primates.


Assuntos
Alouatta/classificação , Alouatta/genética , Predisposição Genética para Doença , Seleção Genética , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética , Alouatta/virologia , Animais , Filogenia , Febre Amarela/genética
12.
Am J Phys Anthropol ; 173(1): 50-60, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32583896

RESUMO

BACKGROUND: In 2007-2009, a major yellow fever virus (YFV) outbreak in Northern Argentina decimated the local howler monkey (Alouatta) population. AIMS: To evaluate whether the surviving howler monkeys possess advantageous genetic variants inherited from monkeys alive prior to the YFV outbreak, we explored the relationship between Toll-like receptor (TLR) 7 and TLR8 gene variation and YFV susceptibility. METHODS: We used samples from Alouatta individuals in Misiones, Argentina alive before the YFV outbreak, individuals that died during the outbreak, and individuals that survived the outbreak and are alive today. We measured genetic divergence between Alouatta YFV exposure groups and evaluated Alouatta-specific substitutions for functional consequences. RESULTS: We did not find different allele frequencies in the post-YFV exposure Alouatta group compared to the pre-exposure group. We identified three nonsynonymous variants in TLR7 in Alouatta guariba clamitans. Two of these substitutions are under positive selection in functionally important regions of the gene. DISCUSSION AND CONCLUSIONS: Our results did not indicate that surviving howler monkey spossess advantageous genetic variants at greater frequency than those alive before the YFV outbreak. However, the positively selected unique coding differences in A. guariba clamitans are in the region important in pathogen detection which may affect YFV resistance. Morework is necessary to fully explore this hypothesis.


Assuntos
Alouatta , Predisposição Genética para Doença/genética , Receptor 7 Toll-Like/genética , Febre Amarela , Alouatta/genética , Alouatta/virologia , Animais , Feminino , Masculino , Febre Amarela/genética , Febre Amarela/veterinária , Vírus da Febre Amarela
13.
Genome Biol Evol ; 12(2): 3917-3925, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32011707

RESUMO

Toll-like receptors (TLRs) are a complex family of innate immune genes that are well characterized in mammals and birds but less well understood in nonavian sauropsids (reptiles). The advent of highly contiguous draft genomes of nonmodel organisms enables study of such gene families through analysis of synteny and sequence identity. Here, we analyze TLR genes from the genomes of 22 tetrapod species. Findings reveal a TLR8 gene expansion in crocodilians and turtles (TLR8B), and a second duplication (TLR8C) specifically within turtles, followed by pseudogenization of that gene in the nonfreshwater species (desert tortoise and green sea turtle). Additionally, the Mojave desert tortoise (Gopherus agassizii) has a stop codon in TLR8B (TLR8-1) that is polymorphic among conspecifics. Revised orthology further reveals a new TLR homolog, TLR21-like, which is exclusive to lizards, snakes, turtles, and crocodilians. These analyses were made possible by a new draft genome assembly of the desert tortoise (gopAga2.0), which used chromatin-based assembly to yield draft chromosomal scaffolds (L50 = 26 scaffolds, N50 = 28.36 Mb, longest scaffold = 107 Mb) and an enhanced de novo genome annotation with 25,469 genes. Our three-step approach to orthology curation and comparative analysis of TLR genes shows what new insights are possible using genome assemblies with chromosome-scale scaffolds that permit integration of synteny conservation data.


Assuntos
Cromossomos/genética , Genoma/genética , Receptores Toll-Like/genética , Animais , Filogenia , Répteis/genética , Répteis/metabolismo , Sintenia/genética , Receptor 8 Toll-Like/classificação , Receptor 8 Toll-Like/genética , Receptores Toll-Like/classificação , Tartarugas
14.
Viruses ; 12(2)2020 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991902

RESUMO

The Sonoran Desert tortoise Gopherus morafkai is adapted to the desert, and plays an important ecological role in this environment. There is limited information on the viral diversity associated with tortoises (family Testudinidae), and to date no DNA virus has been identified associated with these animals. This study aimed to assess the diversity of DNA viruses associated with the Sonoran Desert tortoise by sampling their fecal matter. A viral metagenomics approach was used to identify the DNA viruses in fecal samples from wild Sonoran Desert tortoises in Arizona, USA. In total, 156 novel single-stranded DNA viruses were identified from 40 fecal samples. Those belonged to two known viral families, the Genomoviridae (n = 27) and Microviridae (n = 119). In addition, 10 genomes were recovered that belong to the unclassified group of circular-replication associated protein encoding single-stranded (CRESS) DNA virus and five circular molecules encoding viral-like proteins.


Assuntos
Vírus de DNA/isolamento & purificação , Fezes/virologia , Tartarugas/virologia , Animais , Arizona , Vírus de DNA/classificação , Vírus de DNA/genética , DNA Circular , DNA de Cadeia Simples/genética , Genoma Viral , Microviridae/classificação , Microviridae/genética , Microviridae/isolamento & purificação , Microvirus/classificação , Microvirus/genética , Microvirus/isolamento & purificação , Filogenia , Recombinação Genética , Proteínas Virais/genética
15.
Gigascience ; 8(7)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31289836

RESUMO

BACKGROUND: Mammalian X and Y chromosomes share a common evolutionary origin and retain regions of high sequence similarity. Similar sequence content can confound the mapping of short next-generation sequencing reads to a reference genome. It is therefore possible that the presence of both sex chromosomes in a reference genome can cause technical artifacts in genomic data and affect downstream analyses and applications. Understanding this problem is critical for medical genomics and population genomic inference. RESULTS: Here, we characterize how sequence homology can affect analyses on the sex chromosomes and present XYalign, a new tool that (1) facilitates the inference of sex chromosome complement from next-generation sequencing data; (2) corrects erroneous read mapping on the sex chromosomes; and (3) tabulates and visualizes important metrics for quality control such as mapping quality, sequencing depth, and allele balance. We find that sequence homology affects read mapping on the sex chromosomes and this has downstream effects on variant calling. However, we show that XYalign can correct mismapping, resulting in more accurate variant calling. We also show how metrics output by XYalign can be used to identify XX and XY individuals across diverse sequencing experiments, including low- and high-coverage whole-genome sequencing, and exome sequencing. Finally, we discuss how the flexibility of the XYalign framework can be leveraged for other uses including the identification of aneuploidy on the autosomes. XYalign is available open source under the GNU General Public License (version 3). CONCLUSIONS: Sex chromsome sequence homology causes the mismapping of short reads, which in turn affects downstream analyses. XYalign provides a reproducible framework to correct mismapping and improve variant calling on the sex chromsomes.


Assuntos
Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Homologia de Sequência do Ácido Nucleico , Artefatos , Mapeamento de Sequências Contíguas/métodos , Mapeamento de Sequências Contíguas/normas , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Masculino , Alinhamento de Sequência/métodos , Alinhamento de Sequência/normas , Análise de Sequência de DNA/normas
17.
Genome Biol Evol ; 9(1): 231-240, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28206607

RESUMO

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes will result in unequal gene expression between the sexes (e.g. between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression. We compared genome-wide levels of transcription between males and females, and between the X chromosome and the autosomes in the green anole, Anolis carolinensis. We present evidence for dosage compensation between the sexes, and between the sex chromosomes and the autosomes. When dividing the X chromosome into regions based on linkage groups, we discovered that genes in the first reported X-linked region, anole linkage group b (LGb), exhibit complete dosage compensation, although the rest of the X-linked genes exhibit incomplete dosage compensation. Our data further suggest that the mechanism of this dosage compensation is upregulation of the X chromosome in males. We report that approximately 10% of coding genes, most of which are on the autosomes, are differentially expressed between males and females. In addition, genes on the X chromosome exhibited higher ratios of nonsynonymous to synonymous substitution than autosomal genes, consistent with the fast-X effect. Our results from the green anole add an additional observation of dosage compensation in a species with XX/XY sex determination.


Assuntos
Lagartos/genética , Cromossomo X , Animais , Mecanismo Genético de Compensação de Dose , Feminino , Regulação da Expressão Gênica , Lagartos/fisiologia , Masculino , Caracteres Sexuais , Processos de Determinação Sexual
18.
Curr Opin Genet Dev ; 41: 62-71, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27599147

RESUMO

Sex-biased demographic events have played a crucial role in shaping human history. Many of these processes affect genetic variation and can therefore leave detectable signatures in the genome because autosomal, X-linked, Y-linked, and mitochondrial DNA inheritance differ between sexes. Here, we discuss how sex-biased processes shape patterns of genetic diversity across the genome, review recent genomic evidence for sex-biased demography in modern human populations, and suggest directions for future research.


Assuntos
DNA Mitocondrial/genética , Demografia , Variação Genética , Genoma Humano/genética , Feminino , Genética Populacional , Genômica , Humanos , Masculino
19.
Am J Primatol ; 78(2): 256-79, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26606154

RESUMO

Ruffed lemurs (genus Varecia) are often described as having a flexible social organization, such that both cohesive (low fission-fusion dynamics) and fluid (high fission-fusion dynamics) grouping patterns have been observed. In ruffed lemur communities with high fission-fusion dynamics, group members vary in their temporal and spatial dispersion throughout a communally defended territory. These patterns have been likened to those observed in several haplorrhine species that exhibit the most fluid types of fission-fusion social organization (e.g., Pan and Ateles). To substantiate and further refine these claims, we describe the fission-fusion dynamics of a black-and-white ruffed lemur (Varecia variegata) community at Mangevo, an undisturbed primary rainforest site in Ranomafana National Park, Madagascar. We collected instantaneous group scan samples from August 2007-December 2008 (4,044 observation hours) to study and characterize patterns of subgroup size, composition, cohesion, and social association. In 16 consecutive months, we never found all members of the community together. In fact, individuals spent nearly half of their time alone. Subgroups were small, cohesive, and typically of mixed-sex composition. Mixed-sex subgroups were significantly larger, less cohesive, and more common than either male-only or female-only subgroups. Subgroup dynamics were related to shifts in climate, phenology of preferred fruit species, and female reproductive state. On average, association indices were low. Males and females were equally gregarious; however, adult male-male associations were significantly weaker than any other association type. Results presented herein document striking differences in fission-fusion dynamics between black-and-white ruffed lemurs and haplorrhines, while also demonstrating many broad-scale similarities to haplorrhine taxa that possess the most fluid fission-fusion societies.


Assuntos
Meio Ambiente , Lemuridae/fisiologia , Reprodução , Comportamento Social , Animais , Feminino , Madagáscar , Masculino , Estações do Ano
20.
BMC Evol Biol ; 15: 87, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25989795

RESUMO

BACKGROUND: The highly derived morphology and astounding diversity of snakes has long inspired debate regarding the ecological and evolutionary origin of both the snake total-group (Pan-Serpentes) and crown snakes (Serpentes). Although speculation abounds on the ecology, behavior, and provenance of the earliest snakes, a rigorous, clade-wide analysis of snake origins has yet to be attempted, in part due to a dearth of adequate paleontological data on early stem snakes. Here, we present the first comprehensive analytical reconstruction of the ancestor of crown snakes and the ancestor of the snake total-group, as inferred using multiple methods of ancestral state reconstruction. We use a combined-data approach that includes new information from the fossil record on extinct crown snakes, new data on the anatomy of the stem snakes Najash rionegrina, Dinilysia patagonica, and Coniophis precedens, and a deeper understanding of the distribution of phenotypic apomorphies among the major clades of fossil and Recent snakes. Additionally, we infer time-calibrated phylogenies using both new 'tip-dating' and traditional node-based approaches, providing new insights on temporal patterns in the early evolutionary history of snakes. RESULTS: Comprehensive ancestral state reconstructions reveal that both the ancestor of crown snakes and the ancestor of total-group snakes were nocturnal, widely foraging, non-constricting stealth hunters. They likely consumed soft-bodied vertebrate and invertebrate prey that was subequal to head size, and occupied terrestrial settings in warm, well-watered, and well-vegetated environments. The snake total-group - approximated by the Coniophis node - is inferred to have originated on land during the middle Early Cretaceous (~128.5 Ma), with the crown-group following about 20 million years later, during the Albian stage. Our inferred divergence dates provide strong evidence for a major radiation of henophidian snake diversity in the wake of the Cretaceous-Paleogene (K-Pg) mass extinction, clarifying the pattern and timing of the extant snake radiation. Although the snake crown-group most likely arose on the supercontinent of Gondwana, our results suggest the possibility that the snake total-group originated on Laurasia. CONCLUSIONS: Our study provides new insights into when, where, and how snakes originated, and presents the most complete picture of the early evolution of snakes to date. More broadly, we demonstrate the striking influence of including fossils and phenotypic data in combined analyses aimed at both phylogenetic topology inference and ancestral state reconstruction.


Assuntos
Evolução Biológica , Serpentes/classificação , Serpentes/genética , Animais , Ecologia , Evolução Molecular , Extinção Biológica , Fósseis , Genômica , Filogenia , Serpentes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...