Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Cybern ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769189

RESUMO

Studying the nervous system underlying animal motor control can shed light on how animals can adapt flexibly to a changing environment. We focus on the neural basis of feeding control in Aplysia californica. Using the Synthetic Nervous System framework, we developed a model of Aplysia feeding neural circuitry that balances neurophysiological plausibility and computational complexity. The circuitry includes neurons, synapses, and feedback pathways identified in existing literature. We organized the neurons into three layers and five subnetworks according to their functional roles. Simulation results demonstrate that the circuitry model can capture the intrinsic dynamics at neuronal and network levels. When combined with a simplified peripheral biomechanical model, it is sufficient to mediate three animal-like feeding behaviors (biting, swallowing, and rejection). The kinematic, dynamic, and neural responses of the model also share similar features with animal data. These results emphasize the functional roles of sensory feedback during feeding.

2.
Front Robot AI ; 10: 1209202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469630

RESUMO

Over the years, efforts in bioinspired soft robotics have led to mobile systems that emulate features of natural animal locomotion. This includes combining mechanisms from multiple organisms to further improve movement. In this work, we seek to improve locomotion in soft, amphibious robots by combining two independent mechanisms: sea star locomotion gait and gecko adhesion. Specifically, we present a sea star-inspired robot with a gecko-inspired adhesive surface that is able to crawl on a variety of surfaces. It is composed of soft and stretchable elastomer and has five limbs that are powered with pneumatic actuation. The gecko-inspired adhesion provides additional grip on wet and dry surfaces, thus enabling the robot to climb on 25° slopes and hold on statically to 51° slopes.

3.
Neuroinformatics ; 21(1): 163-176, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36070028

RESUMO

Neuron morphology gives rise to distinct axons and dendrites and plays an essential role in neuronal functionality and circuit dynamics. In rat hippocampal neurons, morphological development occurs over roughly one week in vitro. This development has been qualitatively described as occurring in 5 stages. Still, there is a need to quantify cell growth to monitor cell culture health, understand cell responses to sensory cues, and compare experimental results and computational growth model predictions. To address this need, embryonic rat hippocampal neurons were observed in vitro over six days, and their processes were quantified using both standard morphometrics (degree, number of neurites, total length, and tortuosity) and new metrics (distance between change points, relative turning angle, and the number of change points) based on the Change-Point Test to track changes in path trajectories. Of the standard morphometrics, the total length of neurites per cell and the number of endpoints were significantly different between 0.5, 1.5, and 4 days in vitro, which are typically associated with Stages 2-4. Using the Change-Point Test, the number of change points and the average distance between change points per cell were also significantly different between those key time points. This work highlights key quantitative characteristics, both among common and novel morphometrics, that can describe neuron development in vitro and provides a foundation for analyzing directional changes in neurite growth for future studies.


Assuntos
Neuritos , Neurônios , Ratos , Animais , Neuritos/fisiologia , Axônios/fisiologia , Hipocampo , Células Cultivadas
4.
Bioinspir Biomim ; 18(1)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36265472

RESUMO

The past ten years have seen the rapid expansion of the field of biohybrid robotics. By combining engineered, synthetic components with living biological materials, new robotics solutions have been developed that harness the adaptability of living muscles, the sensitivity of living sensory cells, and even the computational abilities of living neurons. Biohybrid robotics has taken the popular and scientific media by storm with advances in the field, moving biohybrid robotics out of science fiction and into real science and engineering. So how did we get here, and where should the field of biohybrid robotics go next? In this perspective, we first provide the historical context of crucial subareas of biohybrid robotics by reviewing the past 10+ years of advances in microorganism-bots and sperm-bots, cyborgs, and tissue-based robots. We then present critical challenges facing the field and provide our perspectives on the vital future steps toward creating autonomous living machines.


Assuntos
Robótica , Masculino , Humanos , Sêmen , Músculos
5.
HardwareX ; 11: e00297, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35509909

RESUMO

Recent advances in Freeform Reversible Embedding of Suspended Hydrogels (FRESH), a technique that is compatible with most open-source desktop 3D printers, has enabled the fabrication of complex 3D structures using a wide range of natural and synthetic hydrogels, whose mechanical properties can be modified by embedding long fibers into printed hydrogels. However, fiber extruders dedicated for this application are not commercially available or previously reported. To address this, we have designed a continuous fiber extruder (CFE) that is compatible with low-cost, open-source desktop 3D printers, and demonstrated its performance using a Flashforge Creator-pro printer with a Replistruder-2.0 print-head. Key characteristics of the CFE include: (1) it is affordable, accessible and user-friendly to the 3D printing community due to its low fabrication cost and compatibility with open-source hardware and software, (2) it can embed user-defined 2D and 3D features using long fibers into different types of hydrogels, (3) it works with fibers of different mechanical properties and sizes, (4) it can modify mechanical properties of FRESH printed hydrogels via long fiber embedding.

6.
Sci Rep ; 12(1): 8120, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581253

RESUMO

We present a new computational framework of neuron growth based on the phase field method and develop an open-source software package called "NeuronGrowth_IGAcollocation". Neurons consist of a cell body, dendrites, and axons. Axons and dendrites are long processes extending from the cell body and enabling information transfer to and from other neurons. There is high variation in neuron morphology based on their location and function, thus increasing the complexity in mathematical modeling of neuron growth. In this paper, we propose a novel phase field model with isogeometric collocation to simulate different stages of neuron growth by considering the effect of tubulin. The stages modeled include lamellipodia formation, initial neurite outgrowth, axon differentiation, and dendrite formation considering the effect of intracellular transport of tubulin on neurite outgrowth. Through comparison with experimental observations, we can demonstrate qualitatively and quantitatively similar reproduction of neuron morphologies at different stages of growth and allow extension towards the formation of neurite networks.


Assuntos
Neuritos , Tubulina (Proteína) , Axônios/fisiologia , Dendritos/fisiologia , Neuritos/fisiologia , Neurogênese , Neurônios/fisiologia
7.
ACS Biomater Sci Eng ; 8(1): 303-313, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34860495

RESUMO

Hydrogels are candidate building blocks in a wide range of biomaterial applications including soft and biohybrid robotics, microfluidics, and tissue engineering. Recent advances in embedded 3D printing have broadened the design space accessible with hydrogel additive manufacturing. Specifically, the Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technique has enabled the fabrication of complex 3D structures using extremely soft hydrogels, e.g., alginate and collagen, by assembling hydrogels within a fugitive support bath. However, the low structural rigidity of FRESH printed hydrogels limits their applications, especially those that require operation in nonaqueous environments. In this study, we demonstrated long-fiber embedded hydrogel 3D printing using a multihead printing platform consisting of a custom-built fiber extruder and an open-source FRESH bioprinter with high embedding fidelity. Using this process, fibers were embedded in 3D printed hydrogel components to achieve significant structural reinforcement (e.g., tensile modulus improved from 56.78 ± 8.76 to 382.55 ± 25.29 kPa and tensile strength improved from 9.44 ± 2.28 to 45.05 ± 5.53 kPa). In addition, we demonstrated the versatility of this technique by using fibers of a wide range of sizes and material types and implementing different 2D and 3D embedding patterns, such as embedding a conical helix using electrochemically aligned collagen fiber via nonplanar printing. Moreover, the technique was implemented using low-cost material and is compatible with open-source software and hardware, which facilitates its adoption and modification for new research applications.


Assuntos
Hidrogéis , Impressão Tridimensional , Alginatos , Materiais Biocompatíveis , Engenharia Tecidual
8.
Front Robot AI ; 8: 673533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996931

RESUMO

Stimuli-responsive hydrogels are candidate building blocks for soft robotic applications due to many of their unique properties, including tunable mechanical properties and biocompatibility. Over the past decade, there has been significant progress in developing soft and biohybrid actuators using naturally occurring and synthetic hydrogels to address the increasing demands for machines capable of interacting with fragile biological systems. Recent advancements in three-dimensional (3D) printing technology, either as a standalone manufacturing process or integrated with traditional fabrication techniques, have enabled the development of hydrogel-based actuators with on-demand geometry and actuation modalities. This mini-review surveys existing research efforts to inspire the development of novel fabrication techniques using hydrogel building blocks and identify potential future directions. In this article, existing 3D fabrication techniques for hydrogel actuators are first examined. Next, existing actuation mechanisms, including pneumatic, hydraulic, ionic, dehydration-rehydration, and cell-powered actuation, are reviewed with their benefits and limitations discussed. Subsequently, the applications of hydrogel-based actuators, including compliant handling of fragile items, micro-swimmers, wearable devices, and origami structures, are described. Finally, challenges in fabricating functional actuators using existing techniques are discussed.

10.
J Biomech Eng ; 143(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513225

RESUMO

Electrochemically aligned collagen (ELAC) threads fabricated by the isoelectric focusing (IF) of collagen have previously shown potential in tissue engineering and more recently in the fabrication of biohybrid robot structures. For applications in biohybrid robotics, ELAC structures are needed that are both robust and compliant enough to facilitate muscle actuation. However, studies on the effects of IF parameters, and the interactions of such fabrication parameters, on the mechanical and geometric properties of resulting ELAC threads have not been previously found in literature. Understanding the impact of these manufacturing parameters on the material properties is critical to facilitate biohybrid robot design. In this study, the effects of IF duration, IF voltage, and collagen solution concentration were investigated and showed statistically significant effects on adjusting ELAC properties via single-factor experiments. The interactions between parameters exhibited significant joint effects on ELAC property tuning through two-factor experiments. Scanning electron microscopy and 2,4,6-trinitrobenzenesulfonic (TNBS) assays revealed the correlation between high mechanical properties and a combination of low porosity and high degree of crosslinking. By simply tuning IF parameters without changing other fabrication steps, such as crosslinker concentration, ELAC threads with a wide range of mechanical and geometric properties were fabricated. The average tensile modulus of the resulting ELAC threads ranged from 198 ± 90 to 758 ± 138 MPa. The average cross-sectional area ranged from 7756 ± 1000 to 1775 ± 457 µm2. The resultant mapping between IF parameters and ELAC thread properties enabled the production of strong and flexible threads with customizable properties.


Assuntos
Colágeno , Engenharia Tecidual
11.
Clin Orthop Relat Res ; 479(2): 406-418, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33165033

RESUMO

BACKGROUND: Fatty infiltration of the rotator cuff occurs after injury to the tendon and results in a buildup of adipose in the muscle. Fatty infiltration may be a biomarker for predicting future injuries and mechanical properties after tendon repair. As such, quantifying fatty infiltration accurately could be a relevant metric for determining the success of tendon repairs. Currently, fatty infiltration is quantified by an experienced observer using the Goutallier or Fuchs staging system, but because such score-based quantification systems rely on subjective assessments, newer techniques using semiautomated analyses in CT and MRI were developed and have met with varying degrees of success. However, semiautomated analyses of CT and MRI results remain limited in cases where only a few two-dimensional slices of tissue are examined and applied to the three-dimensional (3-D) tissue structure. We propose that it is feasible to assess fatty infiltration within the 3-D volume of muscle and tendon in a semiautomated fashion by selecting anatomic features and examining descriptive metrics of intensity histograms collected from a cylinder placed within the central volume of the muscle and tendon of interest. QUESTIONS/PURPOSES: (1) Do descriptive metrics (mean and SD) of intensity histograms from microCT images correlate with the percentage of fat present in muscle after rotator cuff repair? (2) Do descriptive metrics of intensity histograms correlate with the maximum load during mechanical testing of rotator cuff repairs? METHODS: We developed a custom semiautomated program to generate intensity histograms based on user-selected anatomic features. MicroCT images were obtained from 12 adult female New Zealand White rabbits (age 8 to 12 months, weight 3.7 kg ± 5 kg) that were randomized to surgical repair or sham repair of an induced infraspinatus defect. Intensity histograms were generated from images of the operative and contralateral intact shoulder in these rabbits which were presented to the user in a random order without identifying information to minimize sources of bias. The mean and SD of the intensity histograms were calculated and compared with the total percentage of the volume threshold as fat. Patterns of fat identified were qualitatively compared with histologic samples to confirm that thresholding was detecting fat. We conducted monotonic tensile strength-to-failure tests of the humeral-infraspinatus bone-tendon-muscle complex, and evaluated associations between histogram mean and SDs and maximum load. RESULTS: The total percentage of fat was negatively correlated with the intensity histogram mean (Pearson correlation coefficient -0.92; p < 0.001) and positively with intensity histogram SD (Pearson correlation coefficient 0.88; p < 0.001), suggesting that the increase in fat leads to a reduction and wider variability in volumetric tissue density. The percentage of fat content was also negatively correlated with the maximum load during mechanical testing (Pearson correlation coefficient -78; p = 0.001), indicating that as the percentage of fat in the volume increases, the mechanical strength of the repair decreases. Furthermore, the intensity histogram mean was positively correlated with maximum load (Pearson correlation coefficient 0.77; p = 0.001) and histogram SD was negatively correlated with maximum load (Pearson correlation coefficient -0.72; p = 0.004). These correlations were strengthened by normalizing maximum load to account for animal size (Pearson correlation coefficient 0.86 and -0.9, respectively), indicating that as histogram mean decreases, the maximum load of the repair decreases and as histogram spread increases, the maximum load decreases. CONCLUSION: In this ex vivo rabbit model, a semiautomated approach to quantifying fat on microCT images was a noninvasive way of quantifying fatty infiltration associated with the strength of tendon healing. CLINICAL RELEVANCE: Histogram-derived variables may be useful as surrogate measures of repair strength after rotator cuff repair. The preclinical results presented here provide a foundation for future studies to translate this technique to patient studies and additional imaging modalities. This semiautomated method provides an accessible approach to quantification of fatty infiltration by users of varying experience and can be easily adapted to any intensity-based imaging approach. To translate this approach to clinical practice, this technique should be calibrated for MRI or conventional CT imaging and applied to patient scans. Further investigations are needed to assess the correlation of volumetric intensity histogram descriptive metrics to clinical mechanical outcomes.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/patologia , Lesões do Manguito Rotador/diagnóstico por imagem , Lesões do Manguito Rotador/cirurgia , Microtomografia por Raio-X , Animais , Feminino , Imageamento Tridimensional , Coelhos
12.
Biol Cybern ; 114(6): 557-588, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33301053

RESUMO

Animals exhibit remarkable feats of behavioral flexibility and multifunctional control that remain challenging for robotic systems. The neural and morphological basis of multifunctionality in animals can provide a source of bioinspiration for robotic controllers. However, many existing approaches to modeling biological neural networks rely on computationally expensive models and tend to focus solely on the nervous system, often neglecting the biomechanics of the periphery. As a consequence, while these models are excellent tools for neuroscience, they fail to predict functional behavior in real time, which is a critical capability for robotic control. To meet the need for real-time multifunctional control, we have developed a hybrid Boolean model framework capable of modeling neural bursting activity and simple biomechanics at speeds faster than real time. Using this approach, we present a multifunctional model of Aplysia californica feeding that qualitatively reproduces three key feeding behaviors (biting, swallowing, and rejection), demonstrates behavioral switching in response to external sensory cues, and incorporates both known neural connectivity and a simple bioinspired mechanical model of the feeding apparatus. We demonstrate that the model can be used for formulating testable hypotheses and discuss the implications of this approach for robotic control and neuroscience.


Assuntos
Aplysia , Deglutição , Animais , Fenômenos Biomecânicos , Comportamento Alimentar
13.
J Biomed Mater Res B Appl Biomater ; 107(6): 1864-1876, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30485649

RESUMO

Despite advancements in surgical techniques and materials for rotator cuff repair procedures, primary repair failures remain common. This study examines the use of electrochemically aligned collagen (ELAC) threads woven into biotextile scaffolds as grafts to repair critical infraspinatus tendon defects in New Zealand White rabbits. Three surgical treatment groups were evaluated: rabbits undergoing direct repair as operative controls, rabbits receiving ELAC scaffolds alone, and rabbits treated with mesenchymal stem cell (MSC)-seeded ELAC scaffolds. In each animal, the intact, contralateral infraspinatus served as an internal positive control. Tendon-bone constructs were harvested after 3 months in vivo and outcome measures included biomechanical testing, histological staining, and immunohistochemical staining. Biomechanical testing revealed that maximum load-bearing capacity was comparable between all groups, while MSC-seeded scaffold repairs exhibited increased stiffness relative to non-seeded scaffold repairs. Histological staining revealed robust collagen deposition around ELAC fibers and increased cellularity within the continuum of woven scaffolds as compared to native tendon. Immunohistochemical staining revealed presence of collagens I and III in all groups, but procollagen I and the tendon-specific marker tenomodulin were only observed in seeded and non-seeded ELAC scaffold repairs. Findings of this pilot study warrant continued investigation of ELAC biotextile scaffolds for repair of critically-sized rotator cuff tendon defects. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1864-1876, 2019.


Assuntos
Colágeno/química , Teste de Materiais , Regeneração , Lesões do Manguito Rotador , Manguito Rotador/fisiologia , Têxteis , Alicerces Teciduais/química , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Coelhos , Lesões do Manguito Rotador/metabolismo , Lesões do Manguito Rotador/patologia , Lesões do Manguito Rotador/terapia
14.
J Biomech Eng ; 140(2)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28901373

RESUMO

Motor proteins play critical roles in the normal function of cells and proper development of organisms. Among motor proteins, failings in the normal function of two types of proteins, kinesin and dynein, have been shown to lead many pathologies, including neurodegenerative diseases and cancers. As such, it is critical to researchers to understand the underlying mechanics and behaviors of these proteins, not only to shed light on how failures may lead to disease, but also to guide research toward novel treatment and nano-engineering solutions. To this end, many experimental techniques have been developed to measure the force and motility capabilities of these proteins. This review will (a) discuss such techniques, specifically microscopy, atomic force microscopy (AFM), optical trapping, and magnetic tweezers, and (b) the resulting nanomechanical properties of motor protein functions such as stalling force, velocity, and dependence on adenosine triphosophate (ATP) concentrations will be comparatively discussed. Additionally, this review will highlight the clinical importance of these proteins. Furthermore, as the understanding of the structure and function of motor proteins improves, novel applications are emerging in the field. Specifically, researchers have begun to modify the structure of existing proteins, thereby engineering novel elements to alter and improve native motor protein function, or even allow the motor proteins to perform entirely new tasks as parts of nanomachines. Kinesin and dynein are vital elements for the proper function of cells. While many exciting experiments have shed light on their function, mechanics, and applications, additional research is needed to completely understand their behavior.


Assuntos
Dineínas/metabolismo , Cinesinas/metabolismo , Fenômenos Mecânicos , Trifosfato de Adenosina/metabolismo , Dineínas/química , Dineínas/genética , Humanos , Cinesinas/química , Cinesinas/genética , Engenharia de Proteínas
15.
Sci Robot ; 2(12)2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31360812

RESUMO

Can we create robots with the behavioral flexibility and robustness of animals? Engineers often use bio-inspiration to mimic animals. Recent advances in tissue engineering now allow the use of components from animals. By integrating organic and synthetic components, researchers are moving towards the development of engineered organisms whose structural framework, actuation, sensing, and control are partially or completely organic. This review discusses recent exciting work demonstrating how organic components can be used for all facets of robot development. Based on this analysis, we propose a Robotic Taxonomic Key to guide the field towards a unified lexicon for device description.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...