Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(23): 6503-6516, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37772765

RESUMO

The Pikialasorsuaq (North Water polynya) is an area of local and global cultural and ecological significance. However, over the last decades, the region has been subject to rapid warming, and in some recent years, the seasonal ice arch that has historically defined the polynya's northern boundary has failed to form. Both factors are deemed to alter the polynya's ecosystem functioning. To understand how climate-induced changes to the Pikialasorsuaq impact the basis of the marine food web, we explored diatom community-level responses to changing conditions, from a sediment core spanning the last 3800 years. Four metrics were used: total diatom concentrations, taxonomic composition, mean size, and diversity. Generalized additive model statistics highlight significant changes at ca. 2400, 2050, 1550, 1200, and 130 cal years BP, all coeval with known transitions between colder and warmer intervals of the Late Holocene, and regime shifts in the Pikialasorsuaq. Notably, a weaker/contracted polynya during the Roman Warm Period and Medieval Climate Anomaly caused the diatom community to reorganize via shifts in species composition, with the presence of larger taxa but lower diversity, and significantly reduced export production. This study underlines the high sensitivity of primary producers to changes in the polynya dynamics and illustrates that the strong pulse of early spring cryopelagic diatoms that makes the Pikialasorsuaq exceptionally productive may be jeopardized by rapid warming and associated Nares Strait ice arch destabilization. Future alterations to the phenology of primary producers may disproportionately impact higher trophic levels and keystone species in this region, with implications for Indigenous Peoples and global diversity.


Assuntos
Diatomáceas , Diatomáceas/fisiologia , Ecossistema , Gelo , Clima , Cadeia Alimentar
2.
Nat Commun ; 12(1): 4475, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294719

RESUMO

High Arctic ecosystems and Indigenous livelihoods are tightly linked and exposed to climate change, yet assessing their sensitivity requires a long-term perspective. Here, we assess the vulnerability of the North Water polynya, a unique seaice ecosystem that sustains the world's northernmost Inuit communities and several keystone Arctic species. We reconstruct mid-to-late Holocene changes in sea ice, marine primary production, and little auk colony dynamics through multi-proxy analysis of marine and lake sediment cores. Our results suggest a productive ecosystem by 4400-4200 cal yrs b2k coincident with the arrival of the first humans in Greenland. Climate forcing during the late Holocene, leading to periods of polynya instability and marine productivity decline, is strikingly coeval with the human abandonment of Greenland from c. 2200-1200 cal yrs b2k. Our long-term perspective highlights the future decline of the North Water ecosystem, due to climate warming and changing sea-ice conditions, as an important climate change risk.

3.
Glob Chang Biol ; 26(12): 6767-6786, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32885894

RESUMO

Climate warming is rapidly reshaping the Arctic cryosphere and ocean conditions, with consequences for sea ice and pelagic productivity patterns affecting the entire marine food web. To predict how ongoing changes will impact Arctic marine ecosystems, concerted effort from various disciplines is required. Here, we contribute multi-decadal reconstructions of changes in diatom production and sea-ice conditions in relation to Holocene climate and ocean conditions off northwest Greenland. Our multiproxy study includes diatoms, sea-ice biomarkers (IP25 and HBI III) and geochemical tracers (TOC [total organic carbon], TOC:TN [total nitrogen], δ13 C, δ15 N) from a sediment core record spanning the last c. 9,000 years. Our results suggest that the balance between the outflow of polar water from the Arctic, and input of Atlantic water from the Irminger Current into the West Greenland Current is a key factor in controlling sea-ice conditions, and both diatom phenology and production in northeastern Baffin Bay. Our proxy record notably shows that changes in sea-surface conditions initially forced by Neoglacial cooling were dynamically amplified by the shift in the dominant phase of the Arctic Oscillation (AO) mode that occurred at c. 3,000 yr BP, and caused drastic changes in community composition and a decline in diatom production at the study site. In the future, with projected dominant-positive AO conditions favored by Arctic warming, increased water column stratification may counteract the positive effect of a longer open-water growth season and negatively impact diatom production.


Assuntos
Ecossistema , Camada de Gelo , Regiões Árticas , Cadeia Alimentar , Groenlândia
4.
Nat Commun ; 8(1): 1017, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044118

RESUMO

The transition from the last ice age to the present-day interglacial was interrupted by the Younger Dryas (YD) cold period. While many studies exist on this climate event, only few include high-resolution marine records that span the YD. In order to better understand the interactions between ocean, atmosphere and ice sheet stability during the YD, more high-resolution proxy records from the Arctic, located proximal to ice sheet outlet glaciers, are required. Here we present the first diatom-based high-resolution quantitative reconstruction of sea surface conditions from central-eastern Baffin Bay, covering the period 14.0-10.2 kyr BP. Our record reveals warmer sea surface conditions and strong interactions between the ocean and the West Greenland ice margin during the YD. These warmer conditions were caused by increased Atlantic-sourced water inflow combined with amplified seasonality. Our results emphasize the importance of the ocean for ice sheet stability under the current changing climate.

5.
Ambio ; 46(Suppl 1): 106-118, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28116686

RESUMO

In order to establish a baseline for proxy-based reconstructions for the Young Sound-Tyrolerfjord system (Northeast Greenland), we analysed the spatial distribution of primary production and sea ice proxies in surface sediments from the fjord, against monitoring data from the Greenland Ecosystem Monitoring Programme. Clear spatial gradients in organic carbon and biogenic silica contents reflected marine influence, nutrient availability and river-induced turbidity, in good agreement with in situ measurements. The sea ice proxy IP25 was detected at all sites but at low concentrations, indicating that IP25 records from fjords need to be carefully considered and not directly compared to marine settings. The sea ice-associated biomarker HBI III revealed an open-water signature, with highest concentrations near the mid-July ice edge. This proxy evaluation is an important step towards reliable palaeoenvironmental reconstructions that will, ultimately, contribute to better predictions for this High Arctic ecosystem in a warming climate.


Assuntos
Monitorização de Parâmetros Ecológicos , Sedimentos Geológicos/química , Camada de Gelo , Carbono/análise , Carbono/química , Ciclo do Carbono , Mudança Climática , Estuários
6.
Ambio ; 43(1): 60-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24414805

RESUMO

Integrated sediment multiproxy studies and modeling were used to reconstruct past changes in the Baltic Sea ecosystem. Results of natural changes over the past 6000 years in the Baltic Sea ecosystem suggest that forecasted climate warming might enhance environmental problems of the Baltic Sea. Integrated modeling and sediment proxy studies reveal increased sea surface temperatures and expanded seafloor anoxia (in deep basins) during earlier natural warm climate phases, such as the Medieval Climate Anomaly. Under future IPCC scenarios of global warming, there is likely no improvement of bottom water conditions in the Baltic Sea. Thus, the measures already designed to produce a healthier Baltic Sea are insufficient in the long term. The interactions between climate change and anthropogenic impacts on the Baltic Sea should be considered in management, implementation of policy strategies in the Baltic Sea environmental issues, and adaptation to future climate change.


Assuntos
Mudança Climática , Ecossistema , Países Bálticos , Sedimentos Geológicos , Oceanos e Mares
7.
Ambio ; 36(2-3): 155-60, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17520928

RESUMO

Increased nutrient and sediment loading can affect the functioning and biodiversity of coastal ecosystems. Lacking long-term monitoring data, paleolimnological techniques enable the estimation of habitat and diversity change through time. Using these methods we assessed the effects of eutrophication on diatom community structure and species richness over the past ca. 200 years in coastal waters of the Gulf of Finland. The abundance of planktonic diatoms has increased markedly because of increased eutrophication and turbidity. The loss of benthic habitats resulted in a clear decrease in diatom species richness after a threshold of 400-600 microg L(-1) total dissolved nitrogen; no unimodal pattern between diversity and productivity was observed in our data. The urban sites displayed a marked decrease in species richness starting in the late 19th century with increased urbanization. A clear recovery was visible after the cessation of point source loading by the mid-1980s at two sites, whereas at the third site no recovery was detected because of diffuse loading from the large catchment. Changes in the rural sites were minor and did not start until the 1940s.


Assuntos
Diatomáceas/efeitos dos fármacos , Monitoramento Ambiental/métodos , Eutrofização/efeitos dos fármacos , Fitoplâncton/efeitos dos fármacos , Poluentes da Água/toxicidade , Países Bálticos , Cidades , Diatomáceas/fisiologia , Ecossistema , Monitoramento Ambiental/estatística & dados numéricos , Eutrofização/fisiologia , Finlândia , Geografia , Nefelometria e Turbidimetria , Oceanos e Mares , Fitoplâncton/fisiologia , Densidade Demográfica , Especificidade da Espécie , Fatores de Tempo
8.
Ambio ; 33(6): 324-7, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15387067

RESUMO

Successful management of damaged coastal ecosystems requires reliable scientific evidence of their past state. Here we demonstrate that the sediment record of biotic indicators can be used to quantitatively reconstruct nutrient concentrations preceding the short time span covered by monitoring records. We generated a diatom-based weighted-averaging partial least squares transfer function model for total dissolved nitrogen with a prediction accuracy of 0.09 microg L(-1) (log10 units). The model was applied to sediment core data from Laajalahti Bay, an urban embayment in Helsinki, Finland, where its performance was validated against a approximately 30 yr record of water-quality data and known land-use changes in the watershed. The model tracked well the trends in the nutrient record, although it underestimated very high nutrient concentrations in this highly impacted embayment. The generally good agreement between the actual and predicted values implies that the approach has considerable potential in assessing background nutrient concentrations in coastal waters.


Assuntos
Eutrofização , Modelos Teóricos , Nitrogênio/análise , Poluentes da Água/análise , Países Bálticos , Finlândia , Sedimentos Geológicos/química , Valores de Referência , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...