Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 2(1): 84-90, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457211

RESUMO

We investigated the influence of two anionic surfactants, namely, sodium dodecyl sulfate and sodium decyl sulfate, on acrylamide-based microgels consisting of N-n-propylacrylamide. In this context, the main focus was on the influence of surfactant addition on the size of the microgels. The surfactant was added to the reaction mixture before or during the polymerization at different points in time. Microgels were characterized via photon correlation spectroscopy and atomic force microscopy. All results were compared to those for other more common acrylamide-based microgels consisting of N-isopropylacrylamide and N-isopropylmethacrylamide. A significant difference between the three microgels and a strong dependence on the surface activity of the surfactant was found.

2.
Polymers (Basel) ; 8(4)2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30979256

RESUMO

In this work, we compare the properties of smart homopolymer microgels based on N-n-propylacrylamide (NNPAM), N-isopropylacrylamide (NIPAM) and N-isopropylmethacrylamide (NIPMAM) synthesized under identical conditions. The particles are studied with respect to size, morphology, and swelling behavior using scanning electron and scanning force microscopy. In addition, light scattering techniques and fluorescent probes are employed to follow the swelling/de-swelling of the particles. Significant differences are found and discussed. Poly(N-n-propylacrylamide) (PNNPAM) microgels stand out due to their very sharp volume phase transition, whereas Poly(N-isopropylmethacrylamide) (PNIPMAM) particles are found to exhibit a more homogeneous network structure compared to the other two systems.

3.
J Colloid Interface Sci ; 358(1): 62-7, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21419414

RESUMO

We consider the interaction of colloidal spheres in the presence of mono-, di-, and trivalent ions. The colloids are stabilized by electrostatic repulsion due to surface charges. The repulsive part of the interaction potential Ψ(d) is deduced from precise measurements of the rate of slow coagulation. These "microsurface potential measurements" allow us to determine a weak repulsion in which Ψ(d) is of the order of a few k(B)T. These data are compared to ζ potential measured under similar conditions. At higher concentrations both di- and trivalent counterions accumulate at the very proximity of the particle surface leading to charge reversal. The salt concentration c(cr) at which charge reversal occurs is found to be always above the critical coagulation concentration c(ccc). The analysis of Ψ(d) and of the ζ potential demonstrates, however, that adsorption of multivalent counterions starts far below c(cr). Hence, colloid stability in the presence of di- and trivalent ions cannot be described in terms of a DLVO ansatz assuming a surface charge that is constant with regard to the ionic strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA