Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 23(8): 10856-83, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969122

RESUMO

The noise properties of phase-insensitive and phase-sensitive optical transmission links are described in detail, for Gaussian input signals. Formulas are derived for the quadrature covariance matrices of the output signals, which allow one to quantify the noise figures of the links and the fidelities of transmission. Another formula is derived, which relates the density operator of an output signal, in the number-state representation, to its covariance matrix. This density matrix allows one to quantify the decrease in coherence and changes in photon-number probabilities associated with transmission. Based on the aforementioned performance metrics, links with distributed phase-sensitive amplification perform significantly better than other links.

2.
Phys Rev Lett ; 110(23): 230501, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25167475

RESUMO

Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA