Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 91: 89-104, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32927021

RESUMO

Microglia are the immune cells of the brain and become activated during any type of brain injury. In the middle cerebral artery occlusion (MCAo) model, a mouse model for ischemic stroke, we have previously shown that microglia and invaded monocytes upregulate the expression of the muscarinic acetylcholine receptor 3 (M3R) in the ischemic lesion. Here we tested whether this upregulation has an impact on the pathogenesis of MCAo. We depleted the m3R receptor in microglia, but not in circulating monocytes by giving tamoxifen to CX3CR1-CreERT+/+M3Rflox/flox (M3RKOmi) animals 3 weeks prior to MCAo. We found that M3RKOmi male mice had bigger lesions, more pronounced motor deficits after one week and cognitive deficits after about one month compared to control males. The density of Iba1+ cells was lower in the lesions of M3RKO male mice in the early, but not in the late disease phase. In females, these differences were not significant. By giving tamoxifen 1 week prior to MCAo, we depleted m3R in microglia and in circulating monocytes (M3RKOmi/mo). Male M3RKOmi/mo did not differ in lesion size, but had a lower survival rate, showed motor deficits and a reduced accumulation of Iba1+ positive cells into the lesion site. In conclusion, our data suggest that the upregulation of m3R in microglia and monocytes in stroke has a beneficial effect on the clinical outcome in male mice.


Assuntos
Isquemia Encefálica , Microglia , Receptor Muscarínico M3/genética , Acidente Vascular Cerebral , Animais , Encéfalo , Modelos Animais de Doenças , Feminino , Infarto da Artéria Cerebral Média , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Mol Neurobiol ; 57(3): 1446-1458, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31758402

RESUMO

Vascular mechanisms underlying the adverse effects that depression and stress-related mental disorders have on stroke outcome are only partially understood. Identifying the transcriptomic signature of chronic stress in endothelium harvested from the ischemic brain is an important step towards elucidating the biological processes involved. Here, we subjected male 129S6/SvEv mice to a 28-day model of chronic stress. The ischemic lesion was quantified after 30 min filamentous middle cerebral artery occlusion (MCAo) and 48 h reperfusion by T2-weighted MRI. RNA sequencing was used to profile transcriptomic changes in cerebrovascular endothelial cells (ECs) from the infarct. Mice subjected to the stress procedure displayed reduced weight gain, increased adrenal gland weight, and increased hypothalamic FKBP5 mRNA and protein expression. Chronic stress conferred increased lesion volume upon MCAo. Stress-exposed mice showed a higher number of differentially expressed genes between ECs isolated from the ipsilateral and contralateral hemisphere than control mice. The genes in question are enriched for roles in biological processes closely linked to endothelial proliferation and neoangiogenesis. MicroRNA-34a was associated with nine of the top 10 biological process Gene Ontology terms selectively enriched in ECs from stressed mice. Moreover, expression of mature miR-34a-5p and miR-34a-3p in ischemic brain tissue was positively related to infarct size and negatively related to sirtuin 1 (Sirt1) mRNA transcription. In conclusion, this study represents the first EC-specific transcriptomic analysis of chronic stress in brain ischemia. The stress signature uncovered relates to worse stroke outcome and is directly relevant to endothelial mechanisms in the pathogenesis of stroke.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Isquemia/metabolismo , Animais , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos
3.
J Mol Med (Berl) ; 97(8): 1127-1138, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31147725

RESUMO

Peroxisome proliferator-activated receptors (PPARs) control the expression of genes involved in glucose homeostasis, lipid metabolism, inflammation, and cell differentiation. Here, we analyzed the effects of aleglitazar, a dual PPARα and PPARγ agonist with balanced affinity for either subtype, on subacute stroke outcome. Healthy young adult mice were subjected to transient 30 min middle cerebral artery occlusion (MCAo)/reperfusion. Daily treatment with aleglitazar was begun on the day of MCAo and continued until sacrifice. Blood glucose measurements and lipid profile did not differ between mice receiving aleglitazar and mice receiving vehicle after MCAo. Aleglitazar reduced the size of the ischemic lesion as assessed using NeuN immunohistochemistry on day 7. Sensorimotor performance on the rotarod was impaired during the first week after MCAo, an effect that was significantly attenuated by treatment with aleglitazar. Smaller lesion volume in mice treated with aleglitazar was accompanied by a decrease in mRNA transcription of IL-1ß, Vcam-1, and Icam-1, suggesting that reduced proinflammatory signaling and reduced vascular inflammation in the ischemic hemisphere contribute to the beneficial effects of aleglitazar during the first week after stroke. Further experiments in primary murine microglia confirmed that aleglitazar reduces key aspects of microglia activation including NO production, release of proinflammatory cytokines, migration, and phagocytosis. In aggregate, a brief course of PPARα/γ agonist aleglitazar initiated post-event affords stroke protection and functional recovery in a model of mild brain ischemia. Our data underscores the theme of delayed injury processes such as neuroinflammation as promising therapeutic targets in stroke. KEY MESSAGES: PPARα/γ agonist aleglitazar improves stroke outcome after transient brain ischemia. Aleglitazar attenuates inflammatory responses in post-ischemic brain. Aleglitazar reduces microglia migration, phagocytosis, and release of cytokines. Beneficial effects of aleglitazar independent of glucose regulation. Aleglitazar provides extended window of opportunity for stroke treatment.


Assuntos
Isquemia Encefálica , Oxazóis/farmacologia , PPAR alfa/agonistas , PPAR gama/agonistas , Acidente Vascular Cerebral , Tiofenos/farmacologia , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Modelos Animais de Doenças , Camundongos , PPAR alfa/metabolismo , PPAR gama/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/prevenção & controle
4.
Acta Neuropathol ; 135(4): 551-568, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29249001

RESUMO

After stroke, macrophages in the ischemic brain may be derived from either resident microglia or infiltrating monocytes. Using bone marrow (BM)-chimerism and dual-reporter transgenic fate mapping, we here set out to delimit the responses of either cell type to mild brain ischemia in a mouse model of 30 min transient middle cerebral artery occlusion (MCAo). A discriminatory analysis of gene expression at 7 days post-event yielded 472 transcripts predominantly or exclusively expressed in blood-derived macrophages as well as 970 transcripts for microglia. The differentially regulated genes were further collated with oligodendrocyte, astrocyte, and neuron transcriptomes, resulting in a dataset of microglia- and monocyte-specific genes in the ischemic brain. Functional categories significantly enriched in monocytes included migration, proliferation, and calcium signaling, indicative of strong activation. Whole-cell patch-clamp analysis further confirmed this highly activated state by demonstrating delayed outward K+ currents selectively in invading cells. Although both cell types displayed a mixture of known phenotypes pointing to the significance of 'intermediate states' in vivo, blood-derived macrophages were generally more skewed toward an M2 neuroprotective phenotype. Finally, we found that decreased engraftment of blood-borne cells in the ischemic brain of chimeras reconstituted with BM from Selplg-/- mice resulted in increased lesions at 7 days and worse post-stroke sensorimotor performance. In aggregate, our study establishes crucial differences in activation state between resident microglia and invading macrophages after stroke and identifies unique genomic signatures for either cell type.


Assuntos
Isquemia Encefálica/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Cátions Monovalentes/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Macrófagos/patologia , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Potássio/metabolismo , Acidente Vascular Cerebral/patologia , Quimeras de Transplante
5.
Eur Arch Psychiatry Clin Neurosci ; 267(5): 473-477, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27896432

RESUMO

Microglia senescence may promote neuropsychiatric disease. This prompted us to examine the relationship between microglia activation states and telomere biology. A panel of candidate genes associated with telomere maintenance, mitochondrial biogenesis, and cell-cycle regulation were investigated in M1- and M2-polarized microglia in vitro as well as in MACS-purified CD11b+ microglia/brain macrophages from models of stroke, Alzheimer's disease, and chronic stress. M1 polarization, ischemia, and Alzheimer pathology elicited a strikingly similar transcriptomic profile with, in particular, reduced expression of murine Tert. Our results link classical microglia activation with repression of telomere-associated genes, suggesting a new mechanism underlying microglia dysfunction.


Assuntos
Regulação da Expressão Gênica/genética , Infarto da Artéria Cerebral Média/patologia , Microglia/metabolismo , Telomerase/metabolismo , Animais , Antígeno CD11b/metabolismo , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/genética , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Mutação/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Presenilina-1/genética , RNA Mensageiro/metabolismo , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...