Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2405094, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39097951

RESUMO

Solution-processable poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is an important polymeric conductor used extensively in organic flexible, wearable, and stretchable optoelectronics. However, further enhancing its conductivity and long-term stability while maintaining its superb mechanical properties remains challenging. Here, a novel post-treatment approach to enhance the electrical properties and stability of sub-20-nm-thin PEDOT:PSS films processed from solution is introduced. The approach involves a sequential post-treatment with HNO3 and CsCl, resulting in a remarkable enhancement of the electrical conductivity of PEDOT:PSS films to over 5500 S cm-1, along with improved carrier mobility. The post-treated films exhibit remarkable air stability, retaining over 85% of their initial conductivity even after 270 days of storage. Various characterization techniques, including X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy, Hall effect measurements, and grazing incidence wide angle X-ray scattering, coupled with density functional theory calculations, provide insights into the structural changes and interactions responsible for these improvements. To demonstrate the potential for practical applications, the ultrathin PEDOT:PSS films are connected to an inorganic light-emitting diode with a battery, showcasing their suitability as transparent electrodes. This work presents a promising approach for enhancing the electrical conductivity of PEDOT:PSS while offering a comprehensive understanding of the underlying mechanisms that can guide further advances.

2.
ACS Omega ; 8(49): 46804-46815, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107938

RESUMO

Here, we explore a catalyst-free single-step growth strategy that results in high-quality self-assembled single-crystal vertical GaN nanowires (NWs) grown on a wide range of common and novel substrates (including GaN, Ga2O3, and monolayer two-dimensional (2D) transition-metal dichalcogenide (TMD)) within the same chamber and thus under identical conditions by pulsed laser deposition. High-resolution transmission electron microscopy and scanning transmission electron microscopy (HR-STEM) and grazing incidence X-ray diffraction measurements confirm the single-crystalline nature of the obtained NWs, whereas advanced optical and cathodoluminescence measurements provide evidence of their high optical quality. Further analyses reveal that the growth is initiated by an in situ polycrystalline layer formed between the NWs and substrates during growth, while as its thickness increases, the growth mode transforms into single-crystalline NW nucleation. HR-STEM and corresponding energy-dispersive X-ray compositional analyses indicate possible growth mechanisms. All samples exhibit strong band edge UV emission (with a negligible defect band) dominated by radiative recombination with a high optical efficiency (∼65%). As all NWs have similar structural and optical qualities irrespective of the substrate used, this strategy will open new horizons for developing III-nitride-based devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA