Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 154(3): 034105, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33499641

RESUMO

Quantum annealers are an alternative approach to quantum computing, which make use of the adiabatic theorem to efficiently find the ground state of a physically realizable Hamiltonian. Such devices are currently commercially available and have been successfully applied to several combinatorial and discrete optimization problems. However, the application of quantum annealers to problems in chemistry remains a relatively sparse area of research due to the difficulty in mapping molecular systems to the Ising model Hamiltonian. In this paper, we review two different methods for finding the ground state of molecular Hamiltonians using Ising model-based quantum annealers. In addition, we compare the relative effectiveness of each method by calculating the binding energies, bond lengths, and bond angles of the H3 + and H2O molecules and mapping their potential energy curves. We also assess the resource requirements of each method by determining the number of qubits and computation time required to simulate each molecule using various parameter values. While each of these methods is capable of accurately predicting the ground state properties of small molecules, we find that they are still outperformed by modern classical algorithms and that the scaling of the resource requirements remains a challenge.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(3 Pt 2): 036706, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22587208

RESUMO

Finite size scaling for the Schrödinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite-element method was shown to be a powerful numerical method for ab initio electronic-structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite-element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, local density approximation, and an "exact" formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA