Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 225(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34904650

RESUMO

Wing damage attenuates aerial performance in many flying animals such as birds, bats and insects. Insect wings are especially light in order to reduce inertial power requirements for flight at elevated wing flapping frequencies. There is a continuing debate on the factors causing wing damage in insects, including collisions with objects, mechanical stress during flight activity, and aging. This experimental study addressed the reasons for and significance of wing damage for flight in the house fly Musca domestica. We determined natural wing area loss under two housing conditions and recorded flight activity and flight ability throughout the animals' lifetime. Our data show that in animals with eventually pronounced damage, wing damage occurs on average after 6 h of flight, is sex specific and depends on housing conditions. Statistical tests show that physiological age and flight activity have similar significance as predictors for wing damage. Tests on freely flying flies showed that minimum wing area for active flight is approximately 10-34% below the initial area and requires a left-right wing area asymmetry of less than approximately 25%. Our findings broadly confirm predictions from simple aerodynamic theory based on mean wing velocity and area, and are also consistent with previous wing damage measurements in other insect species.


Assuntos
Dípteros , Voo Animal , Animais , Fenômenos Biomecânicos , Dípteros/fisiologia , Feminino , Voo Animal/fisiologia , Insetos , Masculino , Asas de Animais/fisiologia
2.
Insects ; 11(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718051

RESUMO

The shape and function of insect wings tremendously vary between insect species. This review is engaged in how wing design determines the aerodynamic mechanisms with which wings produce an air momentum for body weight support and flight control. We work out the tradeoffs associated with aerodynamic key parameters such as vortex development and lift production, and link the various components of wing structure to flight power requirements and propulsion efficiency. A comparison between rectangular, ideal-shaped and natural-shaped wings shows the benefits and detriments of various wing shapes for gliding and flapping flight. The review expands on the function of three-dimensional wing structure, on the specific role of wing corrugation for vortex trapping and lift enhancement, and on the aerodynamic significance of wing flexibility for flight and body posture control. The presented comparison is mainly concerned with wings of flies because these animals serve as model systems for both sensorimotor integration and aerial propulsion in several areas of biology and engineering.

3.
J R Soc Interface ; 17(164): 20190804, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32156185

RESUMO

The aerial performance of flying insects ultimately depends on how flapping wings interact with the surrounding air. It has previously been suggested that the wing's three-dimensional camber and corrugation help to stiffen the wing against aerodynamic and inertial loading during flapping motion. Their contribution to aerodynamic force production, however, is under debate. Here, we investigated the potential benefit of three-dimensional wing shape in three different-sized species of flies using models of micro-computed tomography-scanned natural wings and models in which we removed either the wing's camber, corrugation, or both properties. Forces and aerodynamic power requirements during root flapping were derived from three-dimensional computational fluid dynamics modelling. Our data show that three-dimensional camber has no benefit for lift production and attenuates Rankine-Froude flight efficiency by up to approximately 12% compared to a flat wing. Moreover, we did not find evidence for lift-enhancing trapped vortices in corrugation valleys at Reynolds numbers between 137 and 1623. We found, however, that in all tested insect species, aerodynamic pressure distribution during flapping is closely aligned to the wing's venation pattern. Altogether, our study strongly supports the assumption that the wing's three-dimensional structure provides mechanical support against external forces rather than improving lift or saving energetic costs associated with active wing flapping.


Assuntos
Dípteros , Voo Animal , Animais , Fenômenos Biomecânicos , Insetos , Modelos Biológicos , Asas de Animais , Microtomografia por Raio-X
4.
Biol Open ; 8(1)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642916

RESUMO

Mechanical properties of insect wings are essential for insect flight aerodynamics. During wing flapping, wings may undergo tremendous deformations, depending on the wings' spatial stiffness distribution. We here show an experimental evaluation of wing stiffness in three species of flies using a micro-force probe and an imaging method for wing surface reconstruction. Vertical deflection in response to point loads at 11 characteristic points on the wing surface reveals that average spring stiffness of bending lines between wing hinge and point loads varies ∼77-fold in small fruit flies and up to ∼28-fold in large blowflies. The latter result suggests that local wing deformation depends to a considerable degree on how inertial and aerodynamic forces are distributed on the wing surface during wing flapping. Stiffness increases with an increasing body mass, amounting to ∼0.6 Nm-1 in fruit flies, ∼0.7 Nm-1 in house flies and ∼2.6 Nm-1 in blowflies for bending lines, running from the wing base to areas near the center of aerodynamic pressure. Wings of house flies have a ∼1.4-fold anisotropy in mean stiffness for ventral versus dorsal loading, while anisotropy is absent in fruit flies and blowflies. We present two numerical methods for calculation of local surface deformation based on surface symmetry and wing curvature. These data demonstrate spatial deformation patterns under load and highlight how veins subdivide wings into functional areas. Our results on wings of living animals differ from previous experiments on detached, desiccated wings and help to construct more realistic mechanical models for testing the aerodynamic consequences of specific wing deformations.

5.
PLoS One ; 10(3): e0118708, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25747702

RESUMO

Honey bees are important model systems for the investigation of learning and memory and for a better understanding of the neuronal basics of brain function. Honey bees also possess a rich repertoire of tones and sounds, from queen piping and quacking to worker hissing and buzzing. In this study, we tested whether the worker bees' sounds can be used as a measure of learning. We therefore conditioned honey bees aversively to odours in a walking arena and recorded both their sound production and their movement. Bees were presented with two odours, one of which was paired with an electric shock. Initially, the bees did not produce any sound upon odour presentation, but responded to the electric shock with a strong hissing response. After learning, many bees hissed at the presentation of the learned odour, while fewer bees hissed upon presentation of another odour. We also found that hissing and movement away from the conditioned odour are independent behaviours that can co-occur but do not necessarily do so. Our data suggest that hissing can be used as a readout for learning after olfactory conditioning, but that there are large individual differences between bees concerning their hissing reaction. The basis for this variability and the possible ecological relevance of the bees' hissing remain to be investigated.


Assuntos
Comunicação Animal , Abelhas/fisiologia , Animais
6.
Front Behav Neurosci ; 7: 29, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23616753

RESUMO

Honey bees perform robustly in different conditioning paradigms. This makes them excellent candidates for studying mechanisms of learning and memory at both an individual and a population level. Here we introduce a novel method of honey bee conditioning: APIS, the Automatic Performance Index System. In an enclosed walking arena where the interior is covered with an electric grid, presentation of odors from either end can be combined with weak electric shocks to form aversive associations. To quantify behavioral responses, we continuously monitor the movement of the bee by an automatic tracking system. We found that escapes from one side to the other, changes in velocity as well as distance and time spent away from the punished odor are suitable parameters to describe the bee's learning capabilities. Our data show that in a short-term memory test the response rate for the conditioned stimulus (CS) in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER)-conditioning. Additionally, we discovered that bees modulate their behavior to aversively learned odors by reducing their rate, speed and magnitude of escapes and that both generalization and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardized and convenient way, and its flexibility adds to the toolbox for studying honey bee behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...