Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 11(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36900747

RESUMO

Recommendations for conventional strength training are well described, and the volume of research on whole-body electromyostimulation training (WB-EMS) is growing. The aim of the present study was to investigate whether active exercise movements during stimulation have a positive effect on strength gains. A total of 30 inactive subjects (28 completed the study) were randomly allocated into two training groups, the upper body group (UBG) and the lower body group (LBG). In the UBG (n = 15; age: 32 (25-36); body mass: 78.3 kg (53.1-114.3 kg)), WB-EMS was accompanied by exercise movements of the upper body and in the LBG (n = 13; age: 26 (20-35); body mass: 67.2 kg (47.4-100.3 kg)) by exercise movements of the lower body. Therefore, UBG served as a control when lower body strength was considered, and LBG served as a control when upper body strength was considered. Trunk exercises were performed under the same conditions in both groups. During the 20-min sessions, 12 repetitions were performed per exercise. In both groups, stimulation was performed with 350 µs wide square pulses at 85 Hz in biphasic mode, and stimulation intensity was 6-8 (scale 1-10). Isometric maximum strength was measured before and after the training (6 weeks set; one session/week) on 6 exercises for the upper body and 4 for the lower body. Isometric maximum strength was significantly higher after the EMS training in both groups in most test positions (UBG p < 0.001-0.031, r = 0.88-0.56; LBG p = 0.001-0.039, r = 0.88-0.57). Only for the left leg extension in the UBG (p = 0.100, r = 0.43) and for the biceps curl in the LBG (p = 0.221, r = 0.34) no changes were observed. Both groups showed similar absolute strength changes after EMS training. Body mass adjusted strength for the left arm pull increased more in the LBG group (p = 0.040, r = 0.39). Based on our results we conclude that concurring exercise movements during a short-term WB-EMS training period have no substantial influence on strength gains. People with health restrictions, beginners with no experience in strength training and people returning to training might be particularly suitable target groups, due to the low training effort. Supposedly, exercise movements become more relevant when initial adaptations to training are exhausted.

2.
Biology (Basel) ; 11(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35453792

RESUMO

Electromyostimulation has been shown to intensify exercise when superimposed on cycling. However, little is known about the application during running, which might help to prevent injuries linked to high running volumes, as intensification of running allows for a reduction in training volume. Therefore, the purpose of the study was to examine the effects of electromyostimulation superimposed on running. Men who were no younger than 18 and no older than 35 were eligible for inclusion in the study. Exclusion criteria were previous experience with electromyostimulation training, the presence of a contraindication according to the manufacturer, or a contraindication to physical activity. A sample of 22 healthy males with an ordinary performance capability accomplished three similar cardiopulmonary treadmill tests until exhaustion in a crossover study design that included lactate measurements and interrogations of perceived exertion. The first test was conducted without electromyostimulation and was followed in a randomized order by the second and the third test condition with 30 or 85 Hz stimulation, respectively, of the lower body. Superimposed electromyostimulation significantly reduced the maximal achieved velocity (control 15.6 ± 1.1 vs. 30 Hz 15.1 ± 1.2, p = 0.002; vs. 85 Hz 14.9 ± 1.1 km/h, p < 0.001), increased the perceived exertion at 10, 12 and 14 km/h (85 Hz + 0.7, p = 0.036; +0.9, p = 0.007; +1.3, p < 0.001; 30 Hz + 0.7, p = 0.025; +1.0, p = 0.002; +1.2, p < 0.001), and induced a significantly higher oxygen uptake at 8 km/h (85 Hz + 1.1, p = 0.006; 30 Hz + 0.9 mL·min−1·kg−1, p = 0.042), 10 km/h (30 Hz + 0.9 mL·min−1·kg−1, p = 0.032), and 14 km/h (85 Hz + 1.0 mL·min−1·kg−1, p = 0.011). Both electromyostimulation conditions significantly limited the maximal lactate level (30 Hz p = 0.046; 85 Hz p < 0.001) and 85 Hz also the recovery lactate level (p < 0.001). Superimposed electromyostimulation is feasible and intensifies running. Coaches and athletes could benefit from the increased training stimulus by reducing running velocity or volume, by combining endurance and strength training, and also by inducing better adaptations while maintaining the same velocity or volume. Therefore, electromyostimulation superimposed on running could be an interesting training tool for runners.

3.
J Hum Kinet ; 51: 71-81, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28149370

RESUMO

This study aimed to describe the acute changes of both standard physiological-perceptual markers and circulating microRNAs in response to tennis match-play in a detailed case report. Two elite male baseliners with comparable tennis experience were tested for anthropometric and fitness related variables and played 2 h of match-play on a red-clay court. The changes of standard physiological-perceptual markers including the heart rate, lactate concertation, creatine kinase activity, urea concentration and rating of perceived exertion as well as circulating microRNA-133a, -486 and -126 expression rates were examined at 10 different time-points (i.e., pre, during and up to 24 h post match-play). Player 2 had lower fitness related variables, but a higher heart rate, lactate concentration, creatine kinase activity and rating of perceived exertion during play than player 1. Player 2 showed an increase in all microRNAs (≤3.83-fold), most evident post match-play, whereas player 1 demonstrated a decrease (≤0.41-fold). The time-course in the changes of all standard physiological-perceptual markers was similar in both players, whereas this of the microRNAs was different. It was concluded that the relative changes of the circulating microRNA-133a, -486 and 126 expression rates of both players differed in response to tennis match-play with respect to the experienced physiological-perceptual stress and the underlying fitness level. Therefore, circulating microRNAs can serve as additional biomarkers for tennis exercise physiology and may be assessed together with standard markers to conclude whether key cellular regulatory processes were induced in response to match-play.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...