Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831131

RESUMO

Achieving complete tumor resection is challenging and can be improved by real-time fluorescence-guided surgery with molecular-targeted probes. However, pre-clinical identification and validation of probes presents a lengthy process that is traditionally performed in animal models and further hampered by inter- and intra-tumoral heterogeneity in target expression. To screen multiple probes at patient scale, we developed a multispectral real-time 3D imaging platform that implements organoid technology to effectively model patient tumor heterogeneity and, importantly, healthy human tissue binding.

2.
Nat Protoc ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504137

RESUMO

Modeling immuno-oncology by using patient-derived material and immune cell co-cultures can advance our understanding of immune cell tumor targeting in a patient-specific manner, offering leads to improve cellular immunotherapy. However, fully exploiting these living cultures requires analysis of the dynamic cellular features modeled, for which protocols are currently limited. Here, we describe the application of BEHAV3D, a platform that implements multi-color live 3D imaging and computational tools for: (i) analyzing tumor death dynamics at both single-organoid or cell and population levels, (ii) classifying T cell behavior and (iii) producing data-informed 3D images and videos for visual inspection and further insight into obtained results. Together, this enables a refined assessment of how solid and liquid tumors respond to cellular immunotherapy, critically capturing both inter- and intratumoral heterogeneity in treatment response. In addition, BEHAV3D uncovers T cell behavior involved in tumor targeting, offering insight into their mode of action. Our pipeline thereby has strong implications for comparing, prioritizing and improving immunotherapy products by highlighting the behavioral differences between individual tumor donors, distinct T cell therapy concepts or subpopulations. The protocol describes critical wet lab steps, including co-culture preparations and fast 3D imaging with live cell dyes, a segmentation-based image processing tool to track individual organoids, tumor and immune cells and an analytical pipeline for behavioral profiling. This 1-week protocol, accessible to users with basic cell culture, imaging and programming expertise, can easily be adapted to any type of co-culture to visualize and exploit cell behavior, having far-reaching implications for the immuno-oncology field and beyond.

3.
Nat Rev Cancer ; 23(11): 731-745, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37704740

RESUMO

By providing spatial, molecular and morphological data over time, live-cell imaging can provide a deeper understanding of the cellular and signalling events that determine cancer response to treatment. Understanding this dynamic response has the potential to enhance clinical outcome by identifying biomarkers or actionable targets to improve therapeutic efficacy. Here, we review recent applications of live-cell imaging for uncovering both tumour heterogeneity in treatment response and the mode of action of cancer-targeting drugs. Given the increasing uses of T cell therapies, we discuss the unique opportunity of time-lapse imaging for capturing the interactivity and motility of immunotherapies. Although traditionally limited in the number of molecular features captured, novel developments in multidimensional imaging and multi-omics data integration offer strategies to connect single-cell dynamics to molecular phenotypes. We review the effect of these recent technological advances on our understanding of the cellular dynamics of tumour targeting and discuss their implication for next-generation precision medicine.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Medicina de Precisão/métodos , Imunoterapia
4.
PLoS Biol ; 21(1): e3001983, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716323

RESUMO

During a microbial infection, responding CD8+ T cells give rise to effector cells that provide acute host defense and memory cells that provide sustained protection. An alternative outcome is exhaustion, a state of T cell dysfunction that occurs in the context of chronic infections and cancer. Although it is evident that exhausted CD8+ T (TEX) cells are phenotypically and molecularly distinct from effector and memory CD8+ T cells, the factors regulating the earliest events in the differentiation process of TEX cells remain incompletely understood. Here, we performed single-cell RNA-sequencing and single-cell ATAC-sequencing of CD8+ T cells responding to LCMV-Armstrong (LCMV-Arm) or LCMV-Clone 13 (LCMV-Cl13), which result in acute or chronic infections, respectively. Compared to CD8+ T cells that had undergone their first division in response to LCMV-Arm (Div1ARM) cells, CD8+ T cells that had undergone their first division in response to LCMV-Cl13 (Div1CL13) expressed higher levels of genes encoding transcription factors previously associated with exhaustion, along with higher levels of Ezh2, the catalytic component of the Polycomb Repressive Complex 2 (PRC2) complex, which mediates epigenetic silencing. Modulation of Ezh2 resulted in altered expression of exhaustion-associated molecules by CD8+ T cells responding to LCMV-Cl13, though the specific cellular and infectious contexts, rather than simply the level of Ezh2 expression, likely determine the eventual outcome. Taken together, these findings suggest that the differentiation paths of CD8+ T cells responding to acute versus chronic infections may diverge earlier than previously appreciated.


Assuntos
Coriomeningite Linfocítica , Humanos , Animais , Camundongos , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/metabolismo , Infecção Persistente , Linfócitos T CD8-Positivos/metabolismo , Vírus da Coriomeningite Linfocítica , Epigênese Genética , Camundongos Endogâmicos C57BL
5.
Nat Biotechnol ; 41(1): 60-69, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35879361

RESUMO

Extending the success of cellular immunotherapies against blood cancers to the realm of solid tumors will require improved in vitro models that reveal therapeutic modes of action at the molecular level. Here we describe a system, called BEHAV3D, developed to study the dynamic interactions of immune cells and patient cancer organoids by means of imaging and transcriptomics. We apply BEHAV3D to live-track >150,000 engineered T cells cultured with patient-derived, solid-tumor organoids, identifying a 'super engager' behavioral cluster comprising T cells with potent serial killing capacity. Among other T cell concepts we also study cancer metabolome-sensing engineered T cells (TEGs) and detect behavior-specific gene signatures that include a group of 27 genes with no previously described T cell function that are expressed by super engager killer TEGs. We further show that type I interferon can prime resistant organoids for TEG-mediated killing. BEHAV3D is a promising tool for the characterization of behavioral-phenotypic heterogeneity of cellular immunotherapies and may support the optimization of personalized solid-tumor-targeting cell therapies.


Assuntos
Neoplasias , Linfócitos T , Humanos , Neoplasias/genética , Neoplasias/terapia , Imunoterapia/métodos , Organoides/patologia
6.
Nat Protoc ; 17(12): 3028-3055, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36180532

RESUMO

Revealing the 3D composition of intact tissue specimens is essential for understanding cell and organ biology in health and disease. State-of-the-art 3D microscopy techniques aim to capture tissue volumes on an ever-increasing scale, while also retaining sufficient resolution for single-cell analysis. Furthermore, spatial profiling through multi-marker imaging is fast developing, providing more context and better distinction between cell types. Following these lines of technological advance, we here present a protocol based on FUnGI (fructose, urea and glycerol clearing solution for imaging) optical clearing of tissue before multispectral large-scale single-cell resolution 3D (mLSR-3D) imaging, which implements 'on-the-fly' linear unmixing of up to eight fluorophores during a single acquisition. Our protocol removes the need for repetitive illumination, thereby allowing larger volumes to be scanned with better image quality in less time, also reducing photo-bleaching and file size. To aid in the design of multiplex antibody panels, we provide a fast and manageable intensity equalization assay with automated analysis to design a combination of markers with balanced intensities suitable for mLSR-3D. We demonstrate effective mLSR-3D imaging of various tissues, including patient-derived organoids and xenografted tumors, and, furthermore, describe an optimized workflow for mLSR-3D imaging of formalin-fixed paraffin-embedded samples. Finally, we provide essential steps for 3D image data processing, including shading correction that does not require pre-acquired shading references and 3D inhomogeneity correction to correct fluorescence artefacts often afflicting 3D datasets. Together, this provides a one-week protocol for eight-fluorescent-marker 3D visualization and exploration of intact tissue of various origins at single-cell resolution.


Assuntos
Imageamento Tridimensional , Organoides , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Microscopia Confocal/métodos
7.
EMBO J ; 41(10): e109675, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35403737

RESUMO

Our understanding of the cellular composition and architecture of cancer has primarily advanced using 2D models and thin slice samples. This has granted spatial information on fundamental cancer biology and treatment response. However, tissues contain a variety of interconnected cells with different functional states and shapes, and this complex organization is impossible to capture in a single plane. Furthermore, tumours have been shown to be highly heterogenous, requiring large-scale spatial analysis to reliably profile their cellular and structural composition. Volumetric imaging permits the visualization of intact biological samples, thereby revealing the spatio-phenotypic and dynamic traits of cancer. This review focuses on new insights into cancer biology uniquely brought to light by 3D imaging and concomitant progress in cancer modelling and quantitative analysis. 3D imaging has the potential to generate broad knowledge advance from major mechanisms of tumour progression to new strategies for cancer treatment and patient diagnosis. We discuss the expected future contributions of the newest imaging trends towards these goals and the challenges faced for reaching their full application in cancer research.


Assuntos
Imageamento Tridimensional , Neoplasias , Humanos , Imageamento Tridimensional/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia
8.
Nat Biotechnol ; 39(10): 1239-1245, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34083793

RESUMO

Despite advances in three-dimensional (3D) imaging, it remains challenging to profile all the cells within a large 3D tissue, including the morphology and organization of the many cell types present. Here, we introduce eight-color, multispectral, large-scale single-cell resolution 3D (mLSR-3D) imaging and image analysis software for the parallelized, deep learning-based segmentation of large numbers of single cells in tissues, called segmentation analysis by parallelization of 3D datasets (STAPL-3D). Applying the method to pediatric Wilms tumor, we extract molecular, spatial and morphological features of millions of cells and reconstruct the tumor's spatio-phenotypic patterning. In situ population profiling and pseudotime ordering reveals a highly disorganized spatial pattern in Wilms tumor compared to healthy fetal kidney, yet cellular profiles closely resembling human fetal kidney cells could be observed. In addition, we identify previously unreported tumor-specific populations, uniquely characterized by their spatial embedding or morphological attributes. Our results demonstrate the use of combining mLSR-3D and STAPL-3D to generate a comprehensive cellular map of human tumors.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Neoplasias/diagnóstico por imagem , Biomarcadores Tumorais/metabolismo , Aprendizado Profundo , Corantes Fluorescentes , Humanos , Rim/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Software
9.
Dev Dyn ; 250(11): 1568-1583, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33848015

RESUMO

BACKGROUND: Nephron progenitor cells (NPCs) undergo a stepwise process to generate all mature nephron structures. Mesenchymal to epithelial transition (MET) is considered a multistep process of NPC differentiation to ensure progressive establishment of new nephrons. However, despite this important role, to date, no marker for NPCs undergoing MET in the nephron exists. RESULTS: Here, we identify LGR6 as a NPC marker, expressed in very early cap mesenchyme, pre-tubular aggregates, renal vesicles, and in segments of S-shaped bodies, following the trajectory of MET. By using a lineage tracing approach in embryonic explants in combination with confocal imaging and single-cell RNA sequencing, we provide evidence for the multiple fates of LGR6+ cells during embryonic nephrogenesis. Moreover, by using long-term in vivo lineage tracing, we show that postnatal LGR6+ cells are capable of generating the multiple lineages of the nephrons. CONCLUSIONS: Given the profound early mesenchymal expression and MET signature of LGR6+ cells, together with the lineage tracing of mesenchymal LGR6+ cells, we conclude that LGR6+ cells contribute to all nephrogenic segments by undergoing MET. LGR6+ cells can therefore be considered an early committed NPC population during embryonic and postnatal nephrogenesis with potential regenerative capability.


Assuntos
Néfrons , Células-Tronco , Diferenciação Celular , Mesoderma , Organogênese/genética
10.
Nat Protoc ; 16(4): 1936-1965, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33692550

RESUMO

Organoid technology has revolutionized the study of human organ development, disease and therapy response tailored to the individual. Although detailed protocols are available for the generation and long-term propagation of human organoids from various organs, such methods are lacking for breast tissue. Here we provide an optimized, highly versatile protocol for long-term culture of organoids derived from either normal human breast tissues or breast cancer (BC) tissues, as well as culturing conditions for a panel of 45 biobanked samples, including BC organoids covering all major disease subtypes (triple-negative, estrogen receptor-positive/progesterone receptor-positive and human epidermal growth receptor 2-positive). Additionally, we provide methods for genetic manipulation by Lipofectamine 2000, electroporation or lentivirus and subsequent organoid selection and clonal culture. Finally, we introduce an optimized method for orthotopic organoid transplantation in mice, which includes injection of organoids and estrogen pellets without the need for surgery. Organoid derivation from tissue fragments until the first split takes 7-21 d; generation of genetically manipulated clonal organoid cultures takes 14-21 d; and organoid expansion for xenotransplantation takes >4 weeks.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Técnicas de Cultura de Células/métodos , Técnicas Genéticas , Organoides/patologia , Transplante Heterólogo , Animais , Bancos de Espécimes Biológicos , Células Clonais , Feminino , Humanos , Camundongos , Fatores de Tempo
11.
Sci Rep ; 10(1): 17667, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077751

RESUMO

Neuroblastoma resection represents a major challenge in pediatric surgery, because of the high risk of complications. Fluorescence-guided surgery (FGS) could lower this risk by facilitating discrimination of tumor from normal tissue and is gaining momentum in adult oncology. Here, we provide the first molecular-targeted fluorescent agent for FGS in pediatric oncology, by developing and preclinically evaluating a GD2-specific tracer consisting of the immunotherapeutic antibody dinutuximab-beta, recently approved for neuroblastoma treatment, conjugated to near-infrared (NIR) fluorescent dye IRDye800CW. We demonstrated specific binding of anti-GD2-IRDye800CW to human neuroblastoma cells in vitro and in vivo using xenograft mouse models. Furthermore, we defined an optimal dose of 1 nmol, an imaging time window of 4 days after administration and show that neoadjuvant treatment with anti-GD2 immunotherapy does not interfere with fluorescence imaging. Importantly, as we observed universal, yet heterogeneous expression of GD2 on neuroblastoma tissue of a wide range of patients, we implemented a xenograft model of patient-derived neuroblastoma organoids with differential GD2 expression and show that even low GD2 expressing tumors still provide an adequate real-time fluorescence signal. Hence, the imaging advancement presented in this study offers an opportunity for improving surgery and potentially survival of a broad group of children with neuroblastoma.


Assuntos
Benzenossulfonatos/uso terapêutico , Neoplasias Encefálicas/cirurgia , Corantes Fluorescentes/uso terapêutico , Gangliosídeos/metabolismo , Indóis/uso terapêutico , Neuroblastoma/cirurgia , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias Experimentais , Neuroblastoma/metabolismo , Análise Serial de Tecidos
12.
J Vis Exp ; (160)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32568249

RESUMO

Organoid technology, in vitro 3D culturing of miniature tissue, has opened a new experimental window for cellular processes that govern organ development and function as well as disease. Fluorescence microscopy has played a major role in characterizing their cellular composition in detail and demonstrating their similarity to the tissue they originate from. In this article, we present a comprehensive protocol for high-resolution 3D imaging of whole organoids upon immunofluorescent labeling. This method is widely applicable for imaging of organoids differing in origin, size and shape. Thus far we have applied the method to airway, colon, kidney, and liver organoids derived from healthy human tissue, as well as human breast tumor organoids and mouse mammary gland organoids. We use an optical clearing agent, FUnGI, which enables the acquisition of whole 3D organoids with the opportunity for single-cell quantification of markers. This three-day protocol from organoid harvesting to image analysis is optimized for 3D imaging using confocal microscopy.


Assuntos
Imageamento Tridimensional/métodos , Organoides/diagnóstico por imagem , Animais , Humanos , Camundongos , Organoides/crescimento & desenvolvimento
13.
Front Oncol ; 10: 92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117746

RESUMO

Diffuse Intrinsic Pontine Glioma (DIPG) is a rare, highly aggressive pediatric brain tumor that originates in the pons. DIPG is untreatable and universally fatal, with a median life expectancy of less than a year. Resection is not an option, due to the anatomical location of the tumor, radiotherapy has limited effect and no chemotherapeutic or targeted treatment approach has proven to be successful. This poor prognosis is partly attributed to the tumor's highly infiltrative diffuse and invasive spread. Thus, targeting the invasive behavior of DIPG has the potential to be of therapeutic value. In order to target DIPG invasion successfully, detailed mechanistic knowledge on the underlying drivers is required. Here, we review both DIPG tumor cell's intrinsic molecular processes and extrinsic environmental factors contributing to DIPG invasion. Importantly, DIPG represents a heterogenous disease and through advances in whole-genome sequencing, different subtypes of disease based on underlying driver mutations are now being recognized. Recent evidence also demonstrates intra-tumor heterogeneity in terms of invasiveness and implies that highly infiltrative tumor subclones can enhance the migratory behavior of neighboring cells. This might partially be mediated by "tumor microtubes," long membranous extensions through which tumor cells connect and communicate, as well as through the secretion of extracellular vesicles. Some of the described processes involved in invasion are already being targeted in clinical trials. However, more research into the mechanisms of DIPG invasion is urgently needed and might result in the development of an effective therapy for children suffering from this devastating disease. We discuss the implications of newly discovered invasive mechanisms for therapeutic targeting and the challenges therapy development face in light of disease in the developing brain.

14.
15.
Nat Protoc ; 14(6): 1756-1771, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31053799

RESUMO

In vitro 3D organoid systems have revolutionized the modeling of organ development and diseases in a dish. Fluorescence microscopy has contributed to the characterization of the cellular composition of organoids and demonstrated organoids' phenotypic resemblance to their original tissues. Here, we provide a detailed protocol for performing high-resolution 3D imaging of entire organoids harboring fluorescence reporters and upon immunolabeling. This method is applicable to a wide range of organoids of differing origins and of various sizes and shapes. We have successfully used it on human airway, colon, kidney, liver and breast tumor organoids, as well as on mouse mammary gland organoids. It includes a simple clearing method utilizing a homemade fructose-glycerol clearing agent that captures 3D organoids in full and enables marker quantification on a cell-by-cell basis. Sample preparation has been optimized for 3D imaging by confocal, super-resolution confocal, multiphoton and light-sheet microscopy. From organoid harvest to image analysis, the protocol takes 3 d.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Organoides/ultraestrutura , Fixação de Tecidos/métodos , Animais , Mama/ultraestrutura , Colo/ultraestrutura , Feminino , Humanos , Imuno-Histoquímica/métodos , Rim/ultraestrutura , Fígado/ultraestrutura , Camundongos
16.
PLoS One ; 13(7): e0201249, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30044874

RESUMO

The role of IL-27 in antiviral immunity is still incompletely understood, especially in the context of chronic viruses that induce a unique environment in their infected host. Cytomegalovirus (CMV) establishes a persistent, tissue localized infection followed by lifelong latency. CMV infects the majority of people and although asymptomatic in healthy individuals, can cause serious disease or death in those with naïve or compromised immune systems. Therefore, there is an urgent need to develop a protective CMV vaccine for people at-risk and identifying key regulators of the protective immune response towards CMV will be crucial. Here we studied mouse CMV (MCMV) in IL-27 receptor deficient animals (Il27ra-/-) to assess the role of IL-27 in regulating CMV immunity. We found that IL-27 enhanced the number of antiviral CD4 T cells upon infection. However, in contrast to a well-established role for CD4 T cells in controlling persistent replication and a positive effect of IL-27 on their numbers, IL-27 promoted MCMV persistence in the salivary gland. This coincided with IL-27 mediated induction of IL-10 production in CD4 T cells. Moreover, IL-27 reduced expression of the transcription factor T-bet and restricted a cytotoxic phenotype in antiviral CD4 T cells. This is a highly intriguing result given the profound cytotoxic phenotype of CMV-specific CD4 T cells seen in humans and we established that dendritic cell derived IL-27 was responsible for this effect. Together, these data show that IL-27 regulates the number and effector functions of MCMV-specific CD4 T cells and could be targeted to enhance control of persistent/latent infection.


Assuntos
Antígenos CD4/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por Herpesviridae/veterinária , Interleucina-27/imunologia , Camundongos/virologia , Muromegalovirus/imunologia , Animais , Linfócitos T CD4-Positivos/virologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Interleucina-10/imunologia , Camundongos/imunologia , Camundongos Endogâmicos C57BL , Glândulas Salivares/imunologia , Glândulas Salivares/virologia
17.
Immunity ; 48(4): 730-744.e5, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29669251

RESUMO

Although characterization of T cell exhaustion has unlocked powerful immunotherapies, the mechanisms sustaining adaptations of short-lived innate cells to chronic inflammatory settings remain unknown. During murine chronic viral infection, we found that concerted events in bone marrow and spleen mediated by type I interferon (IFN-I) and Toll-like receptor 7 (TLR7) maintained a pool of functionally exhausted plasmacytoid dendritic cells (pDCs). In the bone marrow, IFN-I compromised the number and the developmental capacity of pDC progenitors, which generated dysfunctional pDCs. Concurrently, exhausted pDCs in the periphery were maintained by self-renewal via IFN-I- and TLR7-induced proliferation of CD4- subsets. On the other hand, pDC functional loss was mediated by TLR7, leading to compromised IFN-I production and resistance to secondary infection. These findings unveil the mechanisms sustaining a self-perpetuating pool of functionally exhausted pDCs and provide a framework for deciphering long-term exhaustion of other short-lived innate cells during chronic inflammation.


Assuntos
Autorrenovação Celular/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Glicoproteínas de Membrana/imunologia , Receptor 7 Toll-Like/imunologia , Células 3T3 , Animais , Proteínas de Transporte/biossíntese , Linhagem Celular , Proliferação de Células , Proteínas de Ligação a DNA/biossíntese , Células Dendríticas/citologia , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/biossíntese , Proteínas Repressoras , Transdução de Sinais/imunologia , Fator de Transcrição 4/biossíntese , Fatores de Transcrição/biossíntese
18.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29593047

RESUMO

Chronic viral infections represent a major challenge to the host immune response, and a unique network of immunological elements, including cytokines, are required for their containment. By using a model persistent infection with the natural murine pathogen lymphocytic choriomeningitis virus clone 13 (LCMV Cl13) we investigated the role of one such cytokine, interleukin-27 (IL-27), in the control of chronic infection. We found that IL-27 receptor (IL-27R) signaling promoted control of LCMV Cl13 as early as days 1 and 5 after infection and that il27p28 transcripts were rapidly elevated in multiple subsets of dendritic cells (DCs) and myeloid cells. In particular, plasmacytoid DCs (pDCs), the most potent type 1 interferon (IFN-I)-producing cells, significantly increased il27p28 in a Toll-like receptor 7 (TLR7)-dependent fashion. Notably, mice deficient in an IL-27-specific receptor, WSX-1, exhibited a pleiotropy of innate and adaptive immune alterations after chronic lymphocytic choriomeningitis virus (LCMV) infection, including compromised NK cell cytotoxicity and antibody responses. While, the majority of these immune alterations appeared to be cell extrinsic, cell-intrinsic IL-27R was necessary to maintain early pDC numbers, which, alongside lower IFN-I transcription in CD11b+ DCs and myeloid cells, may explain the compromised IFN-I elevation that we observed early after LCMV Cl13 infection in IL-27R-deficient mice. Together, these data highlight the critical role of IL-27 in enabling optimal antiviral immunity early and late after infection with a systemic persistent virus and suggest that a previously unrecognized positive-feedback loop mediated by IL-27 in pDCs might be involved in this process.IMPORTANCE Persistently replicating pathogens, such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus, represent major health problems worldwide. These infections impose a long-term challenge on the host immune system, which must be heavily and continuously regulated to keep pathogen replication in check without causing fatal immunopathology. Using a persistently replicating rodent pathogen, LCMV, in its natural host, we identified the cellular sources and effects of one important regulatory pathway, interleukin-27 receptor WSX-1 signaling, that is required for both very early and late restriction of chronic (but not acute) infection. We found that WSX-1 was necessary to promote innate immunity and the development of aberrant adaptive immune responses. This not only highlights the role of IL-27 receptor signaling in regulating distinct host responses that are known to be necessary to control chronic infections, but also positions IL-27 as a potential therapeutic target for their modulation.


Assuntos
Imunidade Adaptativa/imunologia , Células Dendríticas/imunologia , Imunidade Inata/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Receptores de Citocinas/imunologia , Animais , Doença Crônica , Interleucina-27/imunologia , Células Matadoras Naturais/imunologia , Coriomeningite Linfocítica/patologia , Coriomeningite Linfocítica/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Citocinas/genética , Receptores de Interleucina , Transdução de Sinais
19.
Nat Immunol ; 18(4): 422-432, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28218746

RESUMO

During microbial infection, responding CD8+ T lymphocytes differentiate into heterogeneous subsets that together provide immediate and durable protection. To elucidate the dynamic transcriptional changes that underlie this process, we applied a single-cell RNA-sequencing approach and analyzed individual CD8+ T lymphocytes sequentially throughout the course of a viral infection in vivo. Our analyses revealed a striking transcriptional divergence among cells that had undergone their first division and identified previously unknown molecular determinants that controlled the fate specification of CD8+ T lymphocytes. Our findings suggest a model for the differentiation of terminal effector cells initiated by an early burst of transcriptional activity and subsequently refined by epigenetic silencing of transcripts associated with memory lymphocytes, which highlights the power and necessity of single-cell approaches.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Epigênese Genética , Transcrição Gênica , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Inativação Gênica , Heterogeneidade Genética , Histonas/metabolismo , Memória Imunológica/genética , Memória Imunológica/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Análise de Sequência de RNA , Análise de Célula Única , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcriptoma
20.
J Clin Invest ; 126(10): 3799-3813, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27599295

RESUMO

Suppression of CD8 and CD4 T cells is a hallmark in chronic viral infections, including hepatitis C and HIV. While multiple pathways are known to inhibit CD8 T cells, the host molecules that restrict CD4 T cell responses are less understood. Here, we used inducible and CD4 T cell-specific deletion of the gene encoding the TGF-ß receptor during chronic lymphocytic choriomeningitis virus infection in mice, and determined that TGF-ß signaling restricted proliferation and terminal differentiation of antiviral CD4 T cells. TGF-ß signaling also inhibited a cytotoxic program that includes granzymes and perforin expression at both early and late stages of infection in vivo and repressed the transcription factor eomesodermin. Overexpression of eomesodermin was sufficient to recapitulate in great part the phenotype of TGF-ß receptor-deficient CD4 T cells, while SMAD4 was necessary for CD4 T cell accumulation and differentiation. TGF-ß signaling also restricted accumulation and differentiation of CD4 T cells and reduced the expression of cytotoxic molecules in mice and humans infected with other persistent viruses. These data uncovered an eomesodermin-driven CD4 T cell program that is continuously suppressed by TGF-ß signaling. During chronic viral infection, this program limits CD4 T cell responses while maintaining CD4 T helper cell identity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas Serina-Treonina Quinases/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Animais , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular , Proliferação de Células , Doença Crônica , Infecções por HIV/imunologia , Humanos , Imunoglobulina G/sangue , Coriomeningite Linfocítica/virologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais , Proteína Smad4/metabolismo , Proteínas com Domínio T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...