Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(6): 2491-2499, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38294207

RESUMO

Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are important large biotherapeutics (∼150 kDa) and high structural complexity that require extensive sequence and structure characterization. Middle-down mass spectrometry (MD-MS) is an emerging technique that sequences and maps subunits larger than those released by trypsinolysis. It avoids potentially introducing artifactual modifications that may occur in bottom-up MS while achieving higher sequence coverage compared to top-down MS. However, returning complete sequence information by MD-MS is still challenging. Here, we show that assigning internal fragments in direct infusion MD-MS of a mAb and an ADC substantially improves their structural characterization. For MD-MS of the reduced NIST mAb, including internal fragments recovers nearly 100% of the sequence by accessing the middle sequence region that is inaccessible by terminal fragments. The identification of important glycosylations can also be improved after the inclusion of internal fragments. For the reduced lysine-linked IgG1-DM1 ADC, we show that considering internal fragments increases the DM1 conjugation sites coverage to 80%, comparable to the reported 83% coverage achieved by peptide mapping on the same ADC (Luo et al. Anal. Chem. 2016, 88, 695-702). This study expands our work on the application of internal fragment assignments in top-down MS of mAbs and ADCs and can be extended to other heterogeneous therapeutic molecules such as multispecifics and fusion proteins for more widespread applications.


Assuntos
Anticorpos Monoclonais , Imunoconjugados , Anticorpos Monoclonais/química , Imunoconjugados/química , Espectrometria de Massas/métodos , Mapeamento de Peptídeos , Lisina/química
2.
Anal Chem ; 95(24): 9347-9356, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37278738

RESUMO

Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are two of the most important therapeutic drug classes that require extensive characterization, whereas their large size and structural complexity make them challenging to characterize and demand the use of advanced analytical methods. Top-down mass spectrometry (TD-MS) is an emerging technique that minimizes sample preparation and preserves endogenous post-translational modifications (PTMs); however, TD-MS of large proteins suffers from low fragmentation efficiency, limiting the sequence and structure information that can be obtained. Here, we show that including the assignment of internal fragments in native TD-MS of an intact mAb and an ADC can improve their molecular characterization. For the NIST mAb, internal fragments can access the sequence region constrained by disulfide bonds to increase the TD-MS sequence coverage to over 75%. Important PTM information, including intrachain disulfide connectivity and N-glycosylation sites, can be revealed after including internal fragments. For a heterogeneous lysine-linked ADC, we show that assigning internal fragments improves the identification of drug conjugation sites to achieve a coverage of 58% of all putative conjugation sites. This proof-of-principle study demonstrates the potential value of including internal fragments in native TD-MS of intact mAbs and ADCs, and this analytical strategy can be extended to bottom-up and middle-down MS approaches to achieve even more comprehensive characterization of important therapeutic molecules.


Assuntos
Espectrometria de Massas , Anticorpos Monoclonais/química , Humanos , Glicosilação , Espectrometria de Massas/métodos , Dissulfetos/química , Lisina/química
3.
J Proteome Res ; 22(1): 170-181, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36503236

RESUMO

193 nm ultraviolet photodissociation (UVPD) allows high sequence coverage to be obtained for intact proteins using terminal fragments alone. However, internal fragments, those that contain neither N- nor C- terminus, are typically ignored, neglecting their potential to bolster characterization of intact proteins. Here, we explore internal fragments generated by 193 nm UVPD for proteins ranging in size from 17-47 kDa and using the ClipsMS algorithm to facilitate searches for internal fragments. Internal fragments were only retained if identified in multiple replicates in order to reduce spurious assignments and to explore the reproducibility of internal fragments generated by UVPD. Inclusion of internal fragment improved sequence coverage by an average of 18% and 32% for UVPD and HCD, respectively, across all proteins and charge states studied. However, only an average of 18% of UVPD internal fragments were identified in two out of three replicates relative to the average number identified across all replicates for all proteins studied. Conversely, for HCD, an average of 63% of internal fragments were retained across replicates. These trends reflect an increased risk of false-positive identifications and a need for caution when considering internal fragments for UVPD. Additionally, proton-transfer charge reduction (PTCR) reactions were performed following UVPD or HCD to assess the impact on internal fragment identifications, allowing up to 20% more fragment ions to be retained across multiple replicates. At this time, it is difficult to recommend the inclusion of the internal fragment when searching UVPD spectra without further work to develop strategies for reducing the possibilities of false-positive identifications. All mass spectra are available in the public repository jPOST with the accession number JPST001885.


Assuntos
Proteínas , Espectrometria de Massas em Tandem , Reprodutibilidade dos Testes , Íons , Prótons , Raios Ultravioleta
4.
Analyst ; 148(1): 26-37, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36399030

RESUMO

Disulfide bonds in proteins have a substantial impact on protein structure, stability, and biological activity. Localizing disulfide bonds is critical for understanding protein folding and higher-order structure. Conventional top-down mass spectrometry (TD-MS), where only terminal fragments are assigned for disulfide-intact proteins, can access disulfide information, but suffers from low fragmentation efficiency, thereby limiting sequence coverage. Here, we show that assigning internal fragments generated from TD-MS enhances the sequence coverage of disulfide-intact proteins by 20-60% by returning information from the interior of the protein sequence, which cannot be obtained by terminal fragments alone. The inclusion of internal fragments can extend the sequence information of disulfide-intact proteins to near complete sequence coverage. Importantly, the enhanced sequence information that arise from the assignment of internal fragments can be used to determine the relative position of disulfide bonds and the exact disulfide connectivity between cysteines. The data presented here demonstrates the benefits of incorporating internal fragment analysis into the TD-MS workflow for analyzing disulfide-intact proteins, which would be valuable for characterizing biotherapeutic proteins such as monoclonal antibodies and antibody-drug conjugates.


Assuntos
Dissulfetos , Espectrometria de Massas , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Dissulfetos/química , Espectrometria de Massas/métodos , Fragmentos de Peptídeos , Dobramento de Proteína
5.
J Am Chem Soc ; 144(48): 21826-21830, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36441927

RESUMO

Native mass spectrometry (MS) of proteins and protein assemblies reveals size and binding stoichiometry, but elucidating structures to understand their function is more challenging. Native top-down MS (nTDMS), i.e., fragmentation of the gas-phase protein, is conventionally used to derive sequence information, locate post-translational modifications (PTMs), and pinpoint ligand binding sites. nTDMS also endeavors to dissociate covalent bonds in a conformation-sensitive manner, such that information about higher-order structure can be inferred from the fragmentation pattern. However, the activation/dissociation method used can greatly affect the resulting information on protein higher-order structure. Methods such as electron capture/transfer dissociation (ECD and ETD, or ExD) and ultraviolet photodissociation (UVPD) can produce product ions that are sensitive to structural features of protein complexes. For multi-subunit complexes, a long-held belief is that collisionally activated dissociation (CAD) induces unfolding and release of a subunit, and thus is not useful for higher-order structure characterization. Here we show not only that sequence information can be obtained directly from CAD of native protein complexes but that the fragmentation pattern can deliver higher-order structural information about their gas- and solution-phase structures. Moreover, CAD-generated internal fragments (i.e., fragments containing neither N-/C-termini) reveal structural aspects of protein complexes.


Assuntos
Projetos de Pesquisa , Espectrometria de Massas
6.
Anal Chim Acta ; 1194: 339400, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063165

RESUMO

Top-down mass spectrometry (TD-MS) generates fragment ions that returns information on the polypeptide amino acid sequence. In addition to terminal fragments, internal fragments that result from multiple cleavage events can also be formed. Traditionally, internal fragments are largely ignored due to a lack of available software to reliably assign them, mainly caused by a poor understanding of their formation mechanism. To accurately assign internal fragments, their formation process needs to be better understood. Here, we applied a statistical method to compare fragmentation patterns of internal and terminal fragments of peptides and proteins generated by collisionally activated dissociation (CAD). Internal fragments share similar fragmentation propensities with terminal fragments (e.g., enhanced cleavages N-terminal to proline and C-terminal to acidic residues), suggesting that their formation follows conventional CAD pathways. Internal fragments should be generated by subsequent cleavages of terminal fragments and their formation can be explained by the well-known mobile proton model. In addition, internal fragments can be coupled with terminal fragments to form complementary product ions that span the entire protein sequence. These enhance our understanding of internal fragment formation and can help improve sequencing algorithms to accurately assign internal fragments, which will ultimately lead to more efficient and comprehensive TD-MS analysis of proteins and proteoforms.


Assuntos
Peptídeos , Proteínas , Sequência de Aminoácidos , Íons , Espectrometria de Massas
7.
J Am Soc Mass Spectrom ; 32(7): 1752-1758, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34101447

RESUMO

Top-down mass spectrometry (TD-MS) of intact proteins results in fragment ions that can be correlated to the protein primary sequence. Fragments generated can either be terminal fragments that contain the N- or C-terminus or internal fragments that contain neither termini. Traditionally in TD-MS experiments, the generation of internal fragments has been avoided because of ambiguity in assigning these fragments. Here, we demonstrate that in TD-MS experiments internal fragments can be formed and assigned in collision-based, electron-based, and photon-based fragmentation methods and are rich with sequence information, allowing for a greater extent of the primary protein sequence to be explained. For the three test proteins cytochrome c, myoglobin, and carbonic anhydrase II, the inclusion of internal fragments in the analysis resulted in approximately 15-20% more sequence coverage, with no less than 85% sequence coverage obtained. Combining terminal fragment and internal fragment assignments results in near complete protein sequence coverage. Hence, by including both terminal and internal fragment assignments in TD-MS analysis, deep protein sequence analysis, allowing for the localization of modification sites more reliably, can be possible.


Assuntos
Espectrometria de Massas/métodos , Análise de Sequência de Proteína/métodos , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Proteínas/análise , Proteínas/química
8.
J Proteome Res ; 20(4): 1928-1935, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33650866

RESUMO

Top-down mass spectrometry (TD-MS) of peptides and proteins results in product ions that can be correlated to polypeptide sequence. Fragments can either be terminal fragments, which contain either the N- or the C-terminus, or internal fragments that contain neither termini. Normally, only terminal fragments are assigned due to the computational difficulties of assigning internal fragments. Here we describe ClipsMS, an algorithm that can assign both terminal and internal fragments generated by top-down MS fragmentation. Further, ClipsMS can be used to locate various modifications on the protein sequence. Using ClipsMS to assign TD-MS generated product ions, we demonstrate that for apo-myoglobin, the inclusion of internal fragments increases the sequence coverage up to 78%. Interestingly, many internal fragments cover complementary regions to the terminal fragments that enhance the information that is extracted from a single top-down mass spectrum. Analysis of oxidized apo-myoglobin using terminal and internal fragment matching by ClipsMS confirmed the locations of oxidation sites on the two methionine residues. Internal fragments can be beneficial for top-down protein fragmentation analysis, and ClipsMS can be a valuable tool for assigning both terminal and internal fragments present in a top-down mass spectrum. Data are available via the MassIVE community resource with the identifiers MSV000086788 and MSV000086789.


Assuntos
Mioglobina , Peptídeos , Algoritmos , Sequência de Aminoácidos , Espectrometria de Massas
9.
Langmuir ; 36(17): 4702-4710, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32293900

RESUMO

Lactic acid-functionalized chiral fullerene (C60) molecules are used as models to understand chiral selection in macroionic solutions involving chiral macroions, chiral counterions, and/or chiral co-ions. With the addition of Zn2+ cations, the C60 macroions exhibit slow self-assembly behavior into hollow, spherical, blackberry-type structures, as confirmed by laser light scattering (LLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques. Chiral counterions with high charge density show no selection to the chirality of AC60 macroions (LAC60 and DAC60) during their self-assembly process, while obvious chiral discrimination between the assemblies of LAC60 and DAC60 is observed when chiral counterions with low charge density are present. Compared with chiral counterions, chiral co-ions show weaker effects on chiral selection with larger amounts needed to trigger the chiral discrimination between LAC60 and DAC60. However, they can induce a higher degree of discrimination when abundant chiral co-ions are present in solution. Furthermore, the self-assembly of chiral AC60 macroions is fully suppressed by adding significant amounts of neutral molecules with opposite chirality. Thermodynamic parameters from isothermal titration calorimetry (ITC) reveal that chiral selection is controlled by the ion pairing and the destruction of solvent shells between ions, and meanwhile originates from the delicate balance between electrostatic interaction and molecular chirality.

10.
ACS Nano ; 14(2): 1811-1822, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31995358

RESUMO

We observe the formation of highly controllable and responsive onion-like vesicles by using rigid sphere-rod amphiphilic hybrid macromolecules, composed of charged, hydrophilic Keggin-type clusters (spheres) and hydrophobic rod-like oligofluorenes (OFs). Unlike the commonly used approach, which mainly relies on chain bending of flexible molecules to satisfy different curvatures in onion-like vesicles, the rigid hybrids form flexible interdigitations by tuning the angles between OFs, leading to the formation of bilayers with different sizes. The self-assembled vesicles possess complete onion-like structures from most inner to outer layers, and their size (layer number) can be accurately manipulated by different solution conditions including solvent polarity, ionic strength, temperature, and hybrid concentration, with fixed interbilayer distance under all conditions. Moreover, the vesicle size (layer number) shows excellent reversibility to the change of temperature. The charged feature of spheres, rod length, and overall hybrid architecture shows significant effects on the formation of such onion-like vesicles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...