Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 29(12): 363, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37932547

RESUMO

CONTEXT: The article presents a comparative study of the electronic, magnetic and catalytic properties of CrPS4, AlPS4, GaPS4 and their expanded structures. It is finally found that: When n = 2, 3, the internal electron mobility of the configurations is stronger than when n = 0,1. When n = 1, the five configurations, except configuration 1Cr(4), are susceptible to both electrophilic and nucleophilic reactions at the same time. The configurations are more prone to nucleophilic reactions when n = 2 and 3, and the reaction sites are mainly located on the metal atoms; the more metal atoms, the more nucleophilic reaction sites. When the M atoms in the configuration are Al and Ga atoms, there is no big difference between the contribution of metal atoms and non-metal atoms to the magnetism in the configuration, while in the configuration containing Cr atoms, the metal atoms contribute more to the magnetism and mainly originate from the d-orbitals, which has better magnetic properties and greater application value. Configuration 2Cr(4) and configuration 1Cr(2) have better catalytic and adsorption activities and are most suitable as catalysts. METHODS: In the article, based on topological principles, density functional theory, B3LYP functional and def2-tzvp basis group and Gaussian16 quantum chemistry software were used to optimise the calculations of the clusters CrPS4, AlPS4, GaPS4 and their expanded configurations, with the most stable structure selected for each cluster, and finally, with the help of Multiwfn program, the required analytical data were obtained by assisting the calculations.

2.
J Mol Model ; 29(8): 240, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430136

RESUMO

CONTEXT: The article explores and compares the electronic structure and magnetic properties of transition metal phosphate materials, namely FePS3, CoPS3, and NiPS3. RESEARCH FINDINGS: Analysis of the optimized configuration reveals significant insights into the electronic properties of MnPS3 clusters. Electrons within the cluster exhibit a flow from the metal atom M and the non-metal atom P to the non-metal atom S. The S atom serves as the primary site for electrophilic reactions within the cluster, while the metal atom hosts the main site for nucleophilic reactions. Configurations 2a(2), 2b(2), 3a(4), 3b(3), and 3c(2) exhibit enhanced electron mobility and optimal electronic properties. Moreover, the analysis of the magnetic properties of the optimized configurations demonstrates that the magnetic behavior of MnPS3 clusters is influenced by the spin motion of α electrons in the p orbital. Metal atoms make a relatively significant contribution to the magnetic properties of MnPS3 clusters. Configurations 1b(3), 2c(4), and 3a(4) exhibit comparatively higher magnetic properties compared to other configurations of the same size. This study identifies the optimal configuration for the magnetic and electronic properties of transition metal phosphorothioate materials. It also elucidates the trends in magnetic and electronic properties as the number of metal atoms varies, thereby providing valuable theoretical support for the application of these materials in the fields of magnetic materials and electronic devices. METHODS: In this study, the Fe-based transition elements, namely Fe, Co, and Ni, are selected as the metal atoms M. The cluster MPS3 is used to simulate the local structure of the material, allowing for an investigation into the influence of the metal atoms on its electronic and magnetic properties. By increasing the number of metal atoms and expanding the cluster size, the variations in these properties are explored. Density functional theory (DFT) calculations are performed using the B3LYP functional within the Gaussian09 software package. The MnPS3 cluster is subjected to optimal calculations and vibrational analysis at the def2-tzvp quantization level, resulting in optimized configurations with different spin multiplet degrees. Quantum chemistry software GaussView, wave function analysis software Multiwfn, and plotting software Origin are utilized for data characterization and graphical representation of the magnetic and electronic properties of the optimized configurations. Through the employment of these computational tools, valuable insights into the magnetic and electronic properties of the MnPS3 cluster and its dependency on different metal atoms are obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...