Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 1): 195-201, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038695

RESUMO

The Photoelectron-Related Image and Nano-Spectroscopy (PRINS) endstation located at the Taiwan Photon Source beamline 27A2 houses a photoelectron momentum microscope capable of performing direct-space imaging, momentum-space imaging and photoemission spectroscopy with position sensitivity. Here, the performance of this microscope is demonstrated using two in-house photon sources - an Hg lamp and He(I) radiation - on a standard checkerboard-patterned specimen and an Au(111) single crystal, respectively. By analyzing the intensity profile of the edge of the Au patterns, the Rashba-splitting of the Au(111) Shockley surface state at 300 K, and the photoelectron intensity across the Fermi edge at 80 K, the spatial, momentum and energy resolution were estimated to be 50 nm, 0.0172 Å-1 and 26 meV, respectively. Additionally, it is shown that the band structures acquired in either constant energy contour mode or momentum-resolved photoemission spectroscopy mode were in close agreement.

2.
ACS Appl Mater Interfaces ; 14(14): 16901-16910, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357129

RESUMO

Organic-molecular magnets based on a metal-organic framework with chemically tuned electronic and magnetic properties have been attracting tremendous attention due to their promising applications in molecular magnetic sensors, magnetic particle medicines, molecular spintronics, etc. Here, we investigated the magnetic behavior of a heterojunction comprising a ferromagnetic nickel (Ni) film and an organic semiconductor (OSC) 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) layer. Through the magneto-optical Kerr effect (MOKE), a photoemission electron microscopy (PEEM), X-ray magnetic circular dichroism (XMCD), and X-ray photoelectron spectroscopy (XPS), we found that the adsorption of F4-TCNQ on Cu(100)/Ni not only reverses the in-plane magnetization direction originally exhibited by the Ni layer but also results in enhanced magnetic ordering. Furthermore, the cyano group (CN) in adsorbed F4-TCNQ was found spin-polarized along with conspicuous charge transfer with Ni. The density functional theory (DFT) calculations suggest that the experimentally found spin polarization originates from hybridization between the CN group's π orbitals and Ni's d band. These findings signify that the hybrid states at the organic-ferromagnet interface play a key role in tailoring the magnetic behavior of interfaces. For the case of the F4-TCNQ and Ni heterojunction reported here, interface coupling is an antiferromagnetic one.

3.
Nanoscale Horiz ; 5(7): 1058-1064, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400801

RESUMO

Magnetic anisotropy (MA) is a material preference that involves magnetization aligned along a specific direction and provides a basis for spintronic devices. Here we report the first observation of strong MA in a cobalt-molybdenum disulfide (Co/MoS2) heterojunction. Element-specific magnetic images recorded with an X-ray photoemission electron microscope (PEEM) reveal that ultrathin Co films, of thickness 5 monolayers (ML) and above, form micrometer (µm)-sized domains on monolayer MoS2 flakes of size tens of µm. Image analysis shows that the magnetization of these Co domains is oriented not randomly but in directions apparently correlated with the crystal structure of the underlying MoS2. Evidence from micro-area X-ray photoelectron spectra (µ-XPS) further indicates that a small amount of charge is donated from cobalt to sulfur upon direct contact between Co and MoS2. As the ferromagnetic behavior found for Co/MoS2 is in sharp contrast with that reported earlier for non-reactive Fe/MoS2, we suggest that orbital hybridization at the interface is what makes Co/MoS2 different. Our report provides micro-magnetic and micro-spectral evidence that consolidates the knowledge required to build functional heterojunctions based on two-dimensional (2D) materials.

4.
ACS Nano ; 14(4): 4963-4972, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32233458

RESUMO

Palladium diselenide (PdSe2), a peculiar noble metal dichalcogenide, has emerged as a new two-dimensional material with high predicted carrier mobility and a widely tunable band gap for device applications. The inherent in-plane anisotropy endowed by the pentagonal structure further renders PdSe2 promising for novel electronic, photonic, and thermoelectric applications. However, the direct synthesis of few-layer PdSe2 is still challenging and rarely reported. Here, we demonstrate that few-layer, single-crystal PdSe2 flakes can be synthesized at a relatively low growth temperature (300 °C) on sapphire substrates using low-pressure chemical vapor deposition (CVD). The well-defined rectangular domain shape and precisely determined layer number of the CVD-grown PdSe2 enable us to investigate their layer-dependent and in-plane anisotropic properties. The experimentally determined layer-dependent band gap shrinkage combined with first-principle calculations suggest that the interlayer interaction is weaker in few-layer PdSe2 in comparison with that in bulk crystals. Field-effect transistors based on the CVD-grown PdSe2 also show performances comparable to those based on exfoliated samples. The low-temperature synthesis method reported here provides a feasible approach to fabricate high-quality few-layer PdSe2 for device applications.

5.
Phys Chem Chem Phys ; 20(31): 20629-20634, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30059115

RESUMO

The magnetic properties of the assembled Co nanoparticles on graphene were studied using X-ray magnetic circular dichroism (XMCD), magneto-optical Kerr effects, and a modeling simulation. We demonstrate that the superparamagnetic nanoparticles reveal a ferromagnetic phase when they are assembled on graphene. The moderate increase of the XMCD asymmetry and magnetization with coverage for this assembly indicates a dipolar-mediated magnetism, which is further verified by a model simulation considering the dipolar interaction between neighboring nanoparticles. Furthermore, C K-edge spectra reveal visible dichroism at the π* state of graphene, which indicates the existence of a spin-polarized interface state, while the assembled Co nanoparticles reveal a ferromagnetic phase. These results suggest an efficient route to stabilize the ferromagnetic phase of nanostructures on graphene by tailoring dipolar interactions, which is essential to realize a higher efficiency of spin injection in graphene-based spintronics.

6.
Phys Rev Lett ; 110(11): 117203, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166570

RESUMO

Interfacial moments of an antiferromagnet are known for their prominent effects of induced coercivity enhancement and exchange bias in ferromagnetic-antiferromagnetic exchange-coupled systems. Here we report that the unpinned moments of an antiferromagnetic face-centered-cubic Mn layer can drive the magnetization of an adjacent Fe film perpendicular owing to a formation of intrinsic perpendicular anisotropy. X-ray magnetic circular dichroism and hysteresis loops show establishment of perpendicular magnetization on Fe/Mn bilayers while temperature was decreased. The fact that the magnitude of perpendicular anisotropy of the Fe layer is enhanced proportionally to the out-of-plane oriented orbital moment of the Mn unpinned layer, rather than that of Fe itself, gives evidence for the Mn unpinned moments to be the origin of the established perpendicular magnetization.

7.
Langmuir ; 20(9): 3641-7, 2004 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-15875394

RESUMO

The structure of self-assembled monolayers ofp-terphenyl-4-carboxylic acid and the mixed monolayers of this acid with n-hexadecanoic acid on silver surface were studied by reflection-IR spectroscopy, near-edge X-ray absorption fine structure (NEXAFS) measurement, X-ray photoemission electron microscopy (X-PEEM), and atomic force microscopy. Exposure of the p-terphenyl-4-carboxylate monolayer to H2S vapor resulted in reorganization of the film structure into clusters of the corresponding free acids, in tens of nanometer dimension. Exposure of the mixed monolayer to H2S resulted in reorganization of the mixed monolayer film into phase-separated clusters of respective component molecules. The saturated aliphatic acid formed clusters of submicrometer size, whereas the p-terphenyl-4-carboxylic acid formed clusters of tens of nanometer size, presumably due to different surface mobility and/or intermolecular interaction of the two types of molecule. Restoration of the monolayer film from the clusters, driven by the reaction between the free acid molecules and the basic surface sites, proceeded at different speeds for the two types of molecules. The saturated acid monolayer was restored much faster than the p-terphenyl-4-carboxylic acid monolayer. A domain-separated monolayer in several micrometers scale was obtained. The process was imaged by tapping mode atomic force microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...