Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Proteomics ; 18(1): 30, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915845

RESUMO

BACKGROUND: Communicating hydrocephalus (CH) is a common neurological disorder caused by a blockage of cerebrospinal fluid. In this study, we aimed to explore the potential molecular mechanism underlying CH development. METHODS: Quantitative proteomic analysis was performed to screen the differentially expressed proteins (DEPs) between patients with and without CH. A CH rat model was verified by Hoechst staining, and the co-localization of the target protein and neuron was detected using immunofluorescence staining. Loss-of-function experiments were performed to examine the effect of KLK6 on the synapse structure. RESULTS: A total of 11 DEPs were identified, and kallikrein 6 (KLK6) expression was found to be significantly upregulated in patients with CH compared with that in patients without CH. The CH rat model was successfully constructed, and KLK6 was found to be co-localized with neuronal nuclei in brain tissue. The expression level of IL-1ß, TNF-α, and KLK6 in the CH group was higher than that in the control group. After knockdown of KLK6 expression using small-interfering RNA (siRNA), the expression levels of synapsin-1 and PSD95 in neuronal cells were increased, and the length, number, and structure of synapses were significantly improved. Following siRNA interference KLK6 expression, 5681 differentially expressed genes (DEGs) were identified in transcriptome profile. The upregulated DEGs of Appl2, Nav2, and Nrn1 may be involved in the recovery of synaptic structures after the interference of KLK6 expression. CONCLUSIONS: Collectively, KLK6 participates in the development of CH and might provide a new target for CH treatment.

2.
Dis Markers ; 2021: 9556513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34876932

RESUMO

OBJECTIVE: Inactivation of NLRP3 inflammasome plays a role in reducing the permeability of endothelial cells and improving blood-brain barrier (BBB) dysfunction following traumatic brain injury (TBI). However, the mechanism controlling NLRP3 inflammasome activation remains unclear. This study is aimed at defining the role of miR-29a-5p in NLRP3 inflammasome activation and permeability of endothelial cells under TBI. METHODS: The scratch injury model on brain bEnd.3 microvascular endothelial cells was used as in vitro TBI model cells. Effects of miR-29a mimics and inhibitors on TBI model cells were observed by examining their action on FITC, TEER, and protein contents of ZO-1 and occludin, and cell permeability-associated protein. Luciferase reporter assay evaluated miR-29a-5p targeting to NLRP3. ELISA examined of IL-1ß and IL-18 levels. miR-29a-5p mimic was injected into TBI mouse and its effect on BBB, indicated by Evans blue (EB) staining assay and cerebral water content, and NLRP3 activation was examined. RESULTS: miR-29a-3p and miR-29a-5p mimics decrease the concentration of FITC, and increase TEER and the protein contents of ZO-1 and occludin in TBI model cells. miR-29a-5p silencing disrupted the permeability of mouse bEnd.3 cells. miR-29a-5p targets to NLRP3 through the binding on its 3'UTR and negatively regulates its expression in TBI model cells. NLRP3 inhibition and miR-29a-5p silencing together caused significantly decreased FITC concentration and increased TEER value and release of IL-1ß and IL-18. miR-29a-5p mimic alleviated the BBB and cerebral water content and inactivates NLRP3 in the mouse TBI model. CONCLUSIONS: miR-29a-5p mimics protect TBI-induced increased endothelial cell permeability and BBB dysfunction via suppressing NLRP3 expression and activation.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Permeabilidade Capilar/genética , MicroRNAs/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...