Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 257: 121708, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723355

RESUMO

The ammonia recovery from wastewater via electrochemical technologies represents a promising way for wastewater treatment, resource recovery, and carbon emissions reduction. However, chemicals consumption and reactors scalability of the existing electrochemical systems have become the key challenges for their development and application. In this study, a stacked transmembrane electro-chemisorption (sTMECS) system was developed to utilize authigenic acid and base on site for enhancing ammonia recovery from wastewater. The easily scaled up system was achieved via innovatively connecting the cathode chamber in a unit with the anode chamber in the adjacent unit by a hydrophobic gas permeable membrane (GPM). Thus, authigenic base at cathodes and authigenic acid at anodes could be utilized as stripper and absorbent on site to enhance the transmembrane chemisorption of ammonia. Continuous power supply, reducing the distances of electrodes to GPM and moderate aeration of the catholyte could promote ammonia recovery. Applied to the ammonia recovery from the simulated urine, the sTMECS under the current density 62.5 A/cm2 with a catholyte aeration rate of 3.2 L/(L⋅min) for operation time 4 h showed the transmembrane ammonia flux of 26.00 g N/(m2·h) and the system energy consumption of 10.5 kWh/kg N. Accordingly, the developed sTMECS system with chemicals saving, easy scale-up and excellent performance shows good prospects in recovering ammonia from wastewater.

2.
Water Res ; 258: 121655, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38762914

RESUMO

Ammonia recovery from wastewater is of great significance for aquatic ecology safety, human health and carbon emissions reduction. Electrochemical methods have gained increasing attention since the authigenic base and acid of electrochemical systems can be used as stripper and absorbent for transmembrane chemisorption of ammonia, respectively. However, the separation of electrodes and gas permeable membrane (GPM) significantly restricts the ammonia transfer-transformation process and the authigenic acid-base utilization. To break the restrictions, this study developed a gas permeable membrane electrode assembly (GPMEA), which innovatively integrated anode and cathode on each side of GPM through easy phase inversion of polyvinylidene fluoride binder, respectively. With the GPMEA assembled in a stacked transmembrane electro-chemisorption (sTMECS) system, in situ utilization of authigenic acid and base for transmembrane electro-chemisorption of ammonia was achieved to enhance the ammonia recovery from wastewater. At current density of 60 A/m2, the transmembrane ammonia flux of the GPMEA was 693.0 ± 15.0 g N/(m2·d), which was 86 % and 28 % higher than those of separate GPM and membrane cathode, respectively. The specific energy consumption of the GPMEA was 9.7∼16.1 kWh/kg N, which were about 50 % and 25 % lower than that of separate GPM and membrane cathode, respectively. Moreover, the application of GPMEA in the ammonia recovery from wastewater is easy to scale up in the sTMECS system. Accordingly, with the features of excellent performance, energy saving and easy scale-up, the GPMEA showed good prospects in electrochemical ammonia recovery from wastewater.

3.
Adv Mater ; : e2313844, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615269

RESUMO

Electrocatalytic nitrate reduction reaction (NitRR) in neutral condition offers a promising strategy for green ammonia synthesis and wastewater treatment, the rational design of electrocatalysts is the cornerstone. Inspired by modern factory design where both machines and logistics matter for manufacturing, it is reported that cobalt phosphide (CoP) nanoparticles embedded in zinc-based zeolite imidazole frameworks (Zn-ZIF) function as a nanofactory with high performance. By selective phosphorization of ZnCo bimetallic zeolite imidazole framework (ZnCo-ZIF), the generated CoP nanoparticles act as "machines" (active sites) for molecular manufacturing (NO3 - to NH4 + conversion). The purposely retained framework (Zn-ZIFs) with positive charge promotes logistics automation, i.e., the automatic delivery of NO3 - reactants and timely discharge of NH4 + products in-and-out the nanofactory due to electrostatic interaction. Moreover, the interaction between Zn-ZIF and CoP modulates the Co sites into electron insufficient state with upshifted d-band center, facilitating the reduction/hydrogenation of NO3 - to ammonia and restricting the competitive hydrogen evolution. Consequently, the assembled CoP/Zn-ZIF nanofactory exhibits superior NitRR performances with a high Faraday efficiency of ≈97% and a high ammonia yield of 0.89 mmol cm-1 h-1 in neutral condition, among the best of reported electrocatalysts. The work provides new insights into the design principles of efficient NitRR electrocatalysts.

4.
Angew Chem Int Ed Engl ; 63(22): e202404077, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38494453

RESUMO

Covalent organic frameworks (COFs) are promising photocatalysts for hydrogen peroxide (H2O2) synthesis. However, the nature of organic polymers makes the balance between high activity and stability challenging. We demonstrate that the linkage position matters in the design of robust COF photocatalysts with durable high activity without sacrificial reagents. COFs with ortho- and para-linkages (o-COFs and p-COFs) were constructed by 1,3,5-triformylphloroglucinol with benzene-, pyridine-, pyrazine-orthodiamines and paradiamines. The pyrzaine-containing o-COFs with two pyridinic nitrogen atoms exhibited a H2O2 production rate of 4396 µmol g-1 h-1 together with long-time continuous H2O2 photosynthesis performance in pure water (48 h), superior to the corresponding p-COFs. A four-step reaction mechanism is proposed by density function calculations. Moreover, the active sites and origin of stability enhancement for o-COFs are clarified. This work provides a simple and effective molecular design strategy in the design of robust COF photocatalysts for artificial H2O2 photosynthesis.

5.
Molecules ; 29(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257337

RESUMO

A 3D hydrogen-bonded metal-organic framework, [Cu(apc)2]n (TJU-Dan-5, Hapc = 2-aminopyrimidine-5-carboxylic acid), was synthesized via a solvothermal reaction. The activated TJU-Dan-5 with permanent porosity exhibits a moderate uptake of 1.52 wt% of hydrogen gas at 77 K. The appropriate BET surface areas and decoration of the internal polar pore surfaces with groups that form extensive hydrogen bonds offer a more favorable environment for selective C2H6 adsorption, with a predicted selectivity for C2H6/CH4 of around 101 in C2H6/CH4 (5:95, v/v) mixtures at 273 K under 100 kPa. The molecular model calculation demonstrates a C-H···π interaction and a van der Waals host-guest interaction of C2H6 with the pore walls. This work provides a strategy for the construction of 3D hydrogen-bonded MOFs, which may have great potential in the purification of natural gas.

6.
Angew Chem Int Ed Engl ; 63(2): e202314266, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940614

RESUMO

Co-based metal-organic frameworks (MOFs) as electrocatalysts for two-electron oxygen reduction reaction (2e- ORR) are highly promising for H2 O2 production, but suffer from the intrinsic activity-selectivity trade-off. Herein, we report a ZnCo bimetal-triazole framework (ZnCo-MTF) as high-efficiency 2e- ORR electrocatalysts. The experimental and theoretical results demonstrate that the coordination between 1,2,3-triazole and Co increases the antibonding-orbital occupancy on the Co-N bond, promoting the activation of Co center. Besides, the adjacent Zn-Co sites on 1,2,3-triazole enable an asymmetric "side-on" adsorption mode of O2 , favoring the reduction of O2 molecules and desorption of OOH* intermediate. By virtue of the unique ligand effect, the ZnCo-MTF exhibits a 2e- ORR selectivity of ≈100 %, onset potential of 0.614 V and H2 O2 production rate of 5.55 mol gcat -1 h-1 , superior to the state-of-the-art zeolite imidazole frameworks. Our work paves the way for the design of 2e- ORR electrocatalysts with desirable coordination and electronic structure.

7.
Nat Commun ; 14(1): 5780, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723168

RESUMO

Construction of two-dimensional nanosheets into three-dimensional regular structures facilitates the mass transfer and exploits the maximum potential of two-dimensional building blocks in applications such as catalysis. Here, we report the synthesis of metal-organic frameworks with an orthogonal nanosheet array. The assembly involves the epitaxial growth of single crystalline metal-organic framework nanosheets with a naturally non-preferred facet exposure as the shell on a cubic metal-organic framework as the core. The nanosheets, despite of two typical shapes and crystallographic orientations, also form a single crystalline orthogonally arrayed framework. The density and size of nanosheets in the core-shell-structured composite metal-organic frameworks can be well adjusted. Moreover, metal-organic frameworks with a single composition and hollow orthogonal nanosheet array morphology can be obtained. Benefiting from the unusual facet exposure and macroporous structure, the designed structure exhibits improved electrocatalytic oxygen evolution activity compared to conventional nanosheets.

8.
Small ; 19(43): e2302925, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37356070

RESUMO

Non-precious-metal based electrocatalysts with highly-exposed and well-dispersed active sites are crucially needed to achieve superior electrocatalytic performance for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) toward zinc-air battery (ZAB). Herein, Co-CoO heterostructures derived from nanosized ZIF-67 are densely-exposed and strongly-immobilized onto N-doped porous carbon foam (NPCF) through a self-sacrificial pyrolysis strategy. Benefited from the high exposure of Co-CoO heterostructures and the favorable mass and electron transfer ability of NPCF, the Co-CoO/NPCF electrocatalyst exhibits remarkable performance for both ORR (E1/2  = 0.843 V vs RHE) and OER (Ej = 10 mA cm-2  = 1.586 V vs RHE). Further application of Co-CoO/NPCF as the air-cathode in rechargeable ZAB achieves superior performance for liquid-state ZAB (214.1 mW cm-2 and 600 cycles) and flexible all-solid-state ZAB (93.1 mW cm-2 and 140 cycles). Results from DFT calculations demonstrate that the electronic metal-support interactions between Co-CoO and NPCF via abundant C-Nx sites is favorable for electronic structure modulation, accounting for the remarkable performance.

9.
J Am Chem Soc ; 145(14): 7791-7799, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36896469

RESUMO

Metal-organic frameworks (MOFs) with highly adjustable structures are an emerging family of electrocatalysts in two-electron oxygen reduction reaction (2e-ORR) for H2O2 production. However, the development of MOF-based 2e-ORR catalysts with high H2O2 selectivity and production rate remains challenging. Herein, an elaborate design with fine control over MOFs at both atomic and nano-scale is demonstrated, enabling the well-known Zn/Co bimetallic zeolite imidazole frameworks (ZnCo-ZIFs) as excellent 2e-ORR electrocatalysts. Experimental results combined with density functional theory simulation have shown that the atomic level control can regulate the role of water molecules participating in the ORR process, and the morphology control over desired facet exposure adjusts the coordination unsaturation degree of active sites. The structural regulation at two length scales leads to synchronous control over both the kinetics and thermodynamics for ORR on bimetallic ZIF catalysts. The optimized ZnCo-ZIF with a Zn/Co molar ratio of 9/1 and predominant {001} facet exposure exhibits a high 2e- selectivity of ∼100% and a H2O2 yield of 4.35 mol gcat-1 h-1. The findings pave a new avenue toward the development of multivariate MOFs as advanced 2e-ORR electrocatalysts.

10.
J Am Chem Soc ; 145(5): 3040-3046, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36634002

RESUMO

The development of deep-ultraviolet (DUV)/solar-blind UV nonlinear optical (NLO) crystals simultaneously possessing wide UV transparency, strong second-harmonic generation (SHG) response, and suitable birefringence is a major challenge in advanced laser technology. We herein propose a "cation compensation" strategy for strong optical nonlinearity in inorganic solids that is exemplified by the introduction of strongly electropositive transition metals (TMs). Following this strategy, the first d0 TM UV-transparent NLO sulfates, MF2(SO4) (M = Zr (ZFSO), Hf (HFSO)), have been synthesized. Short UV cutoff edges of 206 nm and below 190 nm are observed for bulk ZFSO and HFSO crystals, respectively, together with the strongest powder SHG responses (3.2 × (ZFSO) and 2.5 × KDP (HFSO)) for solar-blind UV/DUV NLO sulfates, as well as suitable birefringence. This work provides a new and efficient approach to the development of urgently needed high-performance NLO materials for applications in the short-wavelength UV region.

11.
Angew Chem Int Ed Engl ; 61(36): e202208514, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35818130

RESUMO

Noncentrosymmetric (NCS) solids have attracted interest for their potential in ferroelectric, piezoelectric, and nonlinear optical (NLO) devices, but their synthesis remains a major challenge. In this study, the additive Li2 CO3 triggers formation of an NCS precursor at an early nucleation stage, and plays a crucial role in the successful polymorphism transformation. The resultant metastable ß-Sc(IO3 )3 is a promising mid-infrared NLO crystal, with the strongest second-harmonic generation responses (2.2×KTiOPO4 @ 2100 nm, 16×KH2 PO4 @ 1064 nm) and the largest optical band gap (4.52 eV) for a rare-earth iodate, as well as sufficient birefringence (Δn=0.219 @ 546 nm) for type I phase-matching, and wide optical transparency, which are induced by optimal alignment of the iodate anions. This study reveals the key role of additives in the growth of polar NCS solids, a discovery with implications for the strategic design of new NCS polymorphism materials with exceptional NLO properties.

12.
Chemosphere ; 269: 129404, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33385675

RESUMO

Phenolic pollutants as highly toxic and hazardous organics are widely generated from industrial and domestic process. Phenolic pollutants with different hydroxyl position (catechol, resorcinol, hydroquinone, phenol) were preferentially and efficiently oxidized in photocatalytic process (PC) by designing boron-doped TiO2 (B-TiO2).The key role for enhancing the photocatalytic activity of B-TiO2 was the formation of abundant Ti3+ species. The formation of Ti3+-O weakened the competitive adsorption of H2O in aqueous solution and favored the formation of cooperative hydrogen bond on the surface of B-TiO2, leading to enhanced adsorption of phenolic pollutants. The degradation rate constant of B-TiO2 (kB-TiO2) was regardless of the corresponding oxidation potential of phenolic pollutants. The kB-TiO2 for catechol in photocatalytic process was as high as 3.46 min-1, which was 18.2, 1.6 times higher than that of biodegradation and ozonation methods, respectively. Of note, the preferential removal mechanism of phenolic pollutants was elucidated by in-situ attenuated total reflectance (ATR)-IR and density functional theory calculation (DFT). The results were helpful for developing new preferential oxidation technologies in HO∙-mediated process for selectively removing low concentration but highly toxic pollutants.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Catálise , Hidrogênio , Ligação de Hidrogênio , Fenóis , Titânio , Poluentes Químicos da Água/análise
13.
Water Environ Res ; 93(10): 1829-1836, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33253452

RESUMO

The controlled corrosion of zerovalent iron (ZVI) is crucial for the favorable performance of ZVI toward metal(loid)s removal, and dissolved oxygen (DO) plays an important role in the process of ZVI corrosion. However, few efforts have been made to control the concentration of DO in real practice. In this study, we found that the electron efficiency and the specific removal capacity of ZVI toward the removal of four metal(loid)s were increased by 1.2-9.1 times and 1.2-3.6 times, respectively, by simply closing the reactor, while the removal kinetics of metal(loid)s was slightly influenced. The rate constants obtained under open condition were always greater than those obtained under closed condition, and the removal amounts of metal(loid)s by ZVI at the reaction equilibrium under closed condition were nearly equivalent to those under open condition. Compared with the case under open condition, the consumption-redissolution process of DO was decelerated under closed condition, and the rapid corrosion of ZVI was alleviated subsequently. Although closing the reactor is simple, it does contribute much to the favorable electron efficiency of ZVI toward metal(loid)s sequestration and can be easily adopted in real practice. © 2021 Water Environment Federation PRACTITIONER POINTS: Closing the reactor promoted the selectivity of ZVI towards four metal(loid)s removal. The consumption-redissolution process of DO and corrosion of ZVI were decelerated by closing the reactor. Metal(loid)s were reduced to lower valence by ZVI under closed condition. Effect of DO was different when ZVI was applied to remove different metal(loid)s.


Assuntos
Ferro , Poluentes Químicos da Água , Corrosão , Elétrons , Metais
14.
Chemosphere ; 263: 128257, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297202

RESUMO

It is stubborn to remove the lowly concentrated phthalic acid esters (PAEs) that usually coexist with other highly concentrated but low-toxic pollutants in municipal sewage. Herein, we report a novel strategy for completely removing the PAEs over a bi-functional {001}TiO2 surface (with highly exposed {001} facet), which not only serve as functional sites to specifically adsorb the target PAEs pollutants, but also contribute to an enhanced oxidation ability. The adsorption behavior of PAEs on {001}TiO2 is analyzed deeply through kinetic experiments combining with in situ ATR-FTIR spectroscopy and theoretical calculations. The results reveal that the adsorption capacities of PAEs on {001}TiO2 are about 4-5 times higher than that on TiO2, both of which follow the pseudo-second-order and Langmuir model. This is mainly attributed to the interfacial Lewis Acid-Base Pair between {001} facet Ti5c sites and CO of PAEs. Benefitting from the specific adsorption capability toward target pollutant and enhanced oxidation ability of {001} facets, nearly 100% of DMP or DEP in simulated wastewater can be eliminated by {001}TiO2 within 2 h illumination, and the relevant degradation rate constants (k) (3.67 h-1 for DMP and 2.19 h-1 for DEP) are 5.73 and 3.08 folds higher than that of pure TiO2, respectively. In the application of municipal wastewater, nearly 76% of DMP and 85% DEP can be eliminated by {001}TiO2 within 2 h illumination, which are nearly 3-6 fold higher than that of pure TiO2.


Assuntos
Ésteres , Ácidos Ftálicos , Adsorção , Titânio
15.
Environ Sci Technol ; 54(15): 9702-9710, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32644801

RESUMO

Fe(VI) has received increasing attention since it can decompose a wide range of trace organic contaminants (TrOCs) in water treatment. However, the role of short-lived Fe(IV) and Fe(V) in TrOC decomposition by Fe(VI) has been overlooked. Using methyl phenyl sulfoxide (PMSO), carbamazepine, and caffeine as probe TrOCs, we observed that the apparent second-order rate constants (kapp) between TrOCs and Fe(VI) determined with the initial kinetics data were strongly dependent on the initial molar ratios of TrOCs to Fe(VI). Furthermore, the kapp value increases gradually as the reaction proceeds. Several lines of evidence suggested that these phenomena were ascribed to the accumulation of Fe(IV) and Fe(V) arising from Fe(VI) decay. Kinetic models were built and employed to simulate the kinetics of Fe(VI) self-decay and the kinetics of PMSO degradation by Fe(VI). The modeling results revealed that PMSO was mainly degraded by Fe(IV) and Fe(V) rather than by Fe(VI) per se and Fe(V) played a dominant role, which was also supported by the density functional theory calculation results. Given that Fe(IV) and Fe(V) have much greater oxidizing reactivity than Fe(VI), this work urges the development of Fe(V)/Fe(IV)-based oxidation technology for efficient degradation of TrOCs.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Ferro , Cinética , Oxirredução
16.
ACS Appl Mater Interfaces ; 12(16): 18570-18577, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32237730

RESUMO

The utilization of nonprecious metal electrocatalysts for water-splitting may be the ultimate solution for sustainable and clean hydrogen energy. MXene, an emerging two-dimensional material, exhibits many unique properties such as possible metal-like conductivity, hydrophilic surface, and rich chemistry, rendering a group of promising catalysts and catalyst support materials. In this study, exfoliated Ti3C2 MXenes serve as a substrate to perpendicularly grow uniform mesoporous NiCoP nanosheets through an in situ interface-growth strategy and subsequent phosphorization. The obtained Ti3C2@mNiCoP materials with a stable hierarchical sandwich structure possess excellent conductivity, large surface area, and uniform mesopores with high pore volume. With these beneficial properties, the Ti3C2@mNiCoP material exhibits superior overall water-splitting performance compared with that of its building-block counterparts, matching the state-of-the-art water-splitting electrocatalysts.

17.
ACS Cent Sci ; 6(2): 232-240, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32123741

RESUMO

Sodium layered transition metal oxides have been considered as promising cathode materials for sodium ion batteries due to their large capacity and high operating voltage. However, mechanism investigations of chemical evolution and capacity failure at high voltage are inadequate. As a representative cathode, Na2/3Ni1/3Mn2/3O2, the capacity contribution at a 4.2 V plateau has long been assigned to the redox of the Ni3+/Ni4+ couple, while at the same time it suffers large irreversible capacity loss during the initial discharging process. In this work, we prove that the capacity at the 4.2 V plateau is contributed to the irreversible O2-/O2 n-/O2 evolution based on in situ differential electrochemical mass spectrometry and density functional theory calculation results. Besides, a phenomenon of oxygen release and subsequent surface lattice densification is observed, which is responsible for the large irreversible capacity loss during the initial cycle. Furthermore, the oxygen release is successfully suppressed by Fe substitution due to the formation of a unique Fe-(O-O) species, which effectively stabilizes the reversibility of the O2-/O2 n- redox at high operating voltage. Our findings provide a new understanding of the chemical evolution in layered transition metal oxides at high operating voltage. Increasing the covalency of the TM-O bond has been proven to be effective in suppressing the oxygen release and hence improving the electrochemical performance.

18.
Environ Sci Technol ; 54(2): 1157-1166, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31858777

RESUMO

Literature works reported that organic cocontaminants could be degraded during Cr(VI), a contaminant, reduction by sulfite (Cr(VI)/sulfite process). However, the role of Cr(V) and Cr(IV) intermediates in the Cr(VI)/sulfite process has been overlooked. In this study, we confirmed the generation of Cr(V) and proposed a new mechanism for the decomposition of coexisting organic contaminants during Cr(VI)/sulfite reactions occurring in oxygenated solutions at pHini 4.0 with the molar ratio of sulfite to Cr(VI) of 10.0. UV-visible and electron paramagnetic resonance (EPR) spectra indicate that Cr(V) was the predominant Cr intermediates in oxygenated solutions, while Cr(IV) accumulated in deoxygenated solutions. The contribution of Cr(V) to the degradation of organic contaminants was verified by the EPR spectra collected at 2 K and using methyl phenyl sulfoxide as a probe compound. Both Cr(V) and SO4•- contributed to the decomposition of organic contaminants in oxygenated solutions, with the relative contributions from each species being strongly dependent on properties of the target organic cocontaminants. The key mechanisms responsible for Cr(V) accumulation were supported by DFT calculations, and the degradation kinetics of organic cocontaminants was simulated with the program Kintecus 6.51. This work advances the fundamental understanding of the oxidative transformation of coexisting organic contaminants in this process.


Assuntos
Cromo , Sulfitos , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Oxirredução
19.
Nat Mater ; 19(2): 203-211, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31792425

RESUMO

Assemblies of metal oxide nanowires in 3D stacks can enable the realization of nanodevices with tailored conductivity, porous structure and a high surface area. Current fabrication methods require complicated multistep procedures that involve the initial preparation of nanowires followed by manual assembly or transfer printing, and thus lack synthesis flexibility and controllability. Here we report a general synthetic orthogonal assembly approach to controllably construct 3D multilayer-crossed metal oxide nanowire arrays. Taking tungsten oxide semiconducting nanowires as an example, we show the spontaneous orthogonal packing of composite nanorods of poly(ethylene oxide)-block-polystyrene and silicotungstic acid; the following calcination gives rise to 3D cross-stacked nanowire arrays of Si-doped metastable ε-phase WO3. This nanowire stack framework was also tested as a gas detector for the selective sensing of acetone. By using other polyoxometallates, this fabrication method for woodpile-like 3D nanostructures can also be generalized to different doped metal oxide nanowires, which provides a way to manipulate their physical properties for various applications.

20.
J Hazard Mater ; 384: 121497, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31732346

RESUMO

Since the reactive species during the sulfite activation by Fe(III) (Fe(III)/sulfite process) had not been directly determined and the role of in-situ generated Fe(II) was overlooked, this study evaluated the oxidation performance of the Fe(III)/sulfite process, identified the reactive species, and investigated the role of in-situ generated Fe(II) in this process. The results demonstrated that carbamazepine (CBZ) could be degraded at different sulfite concentrations. Compared to the single-dosing mode, sulfite applied with multiple-dosing mode was beneficial to CBZ removal in this process when the same amount of sulfite was dosed. Fe(II) was rapidly generated and then decayed in this process, which were consistent with the trends of CBZ degradation and sulfite consumption. Electron paramagnetic resonance and scavenging experiments showed that SO4- was a major oxidant, while HO also played a significant role in CBZ degradation in this process. The tert-butyl alcohol assay indicated that the generation and re-oxidation of Fe(II) was accompanied with the generation of reactive species. Besides sulfite dosage, CBZ degradation was also affected by initial pH, Fe(III) dosage, and CBZ concentration. Cl- showed little inhibition on CBZ degradation while humic acid inhibited CBZ degradation in this process. This study advances the application of this oxidation system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...